Pregunta
upstudy study bank question image url

Determing a rule for each sequence using words and state if it is constant apferonce or ratio 2) \( 36 ; 32 ; 28 ; 24 ; 20 \) 3) \( 16 ; 4 ; 1 ; 0,25 ; 0.0625 \) 4) \( 6 ;-2 ;-\frac{2}{3} ;-\frac{2}{7} ;-\frac{2}{27} \) 5) \( 36 ; 49 ; 64 ; 81 ; 100 \)

Ask by Reyes Flynn. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Sequence 1:** Decreases by 4 each time (Arithmetic). - **Sequence 2:** Each term is multiplied by 1/4 (Geometric). - **Sequence 3:** Does not follow a constant difference or ratio. - **Sequence 4:** Consists of perfect squares (Neither Arithmetic nor Geometric).

Solución

Let's analyze each sequence step by step to determine the rule governing them and identify whether they are constant, arithmetic (constant difference), or geometric (constant ratio). ### Sequence 1: \( 36, 32, 28, 24, 20 \) 1. **Identify the differences:** - \( 32 - 36 = -4 \) - \( 28 - 32 = -4 \) - \( 24 - 28 = -4 \) - \( 20 - 24 = -4 \) 2. **Rule:** The sequence decreases by 4 each time. 3. **Type:** This is an arithmetic sequence with a constant difference of -4. ### Sequence 2: \( 16, 4, 1, 0.25, 0.0625 \) 1. **Identify the ratios:** - \( \frac{4}{16} = \frac{1}{4} \) - \( \frac{1}{4} = \frac{1}{4} \) - \( \frac{0.25}{1} = \frac{1}{4} \) - \( \frac{0.0625}{0.25} = \frac{1}{4} \) 2. **Rule:** Each term is multiplied by \( \frac{1}{4} \) to get the next term. 3. **Type:** This is a geometric sequence with a constant ratio of \( \frac{1}{4} \). ### Sequence 3: \( 6, -2, -\frac{2}{3}, -\frac{2}{7}, -\frac{2}{27} \) 1. **Identify the pattern:** - The first term is 6. - The second term is -2. - The third term is \( -\frac{2}{3} \). - The fourth term is \( -\frac{2}{7} \). - The fifth term is \( -\frac{2}{27} \). 2. **Identify the differences:** - The difference between the first and second term is \( -2 - 6 = -8 \). - The difference between the second and third term is \( -\frac{2}{3} - (-2) = -\frac{2}{3} + 2 = \frac{4}{3} \). - The differences do not form a constant pattern. 3. **Identify the ratios:** - \( \frac{-2}{6} = -\frac{1}{3} \) - \( \frac{-\frac{2}{3}}{-2} = \frac{1}{3} \) - \( \frac{-\frac{2}{7}}{-\frac{2}{3}} = \frac{3}{7} \) - \( \frac{-\frac{2}{27}}{-\frac{2}{7}} = \frac{7}{27} \) 4. **Rule:** The sequence does not follow a constant difference or ratio. It appears to be a more complex sequence. 5. **Type:** This sequence does not fit neatly into constant difference or ratio categories. ### Sequence 4: \( 36, 49, 64, 81, 100 \) 1. **Identify the differences:** - \( 49 - 36 = 13 \) - \( 64 - 49 = 15 \) - \( 81 - 64 = 17 \) - \( 100 - 81 = 19 \) 2. **Identify the pattern in differences:** - The differences are increasing by 2 each time. 3. **Rule:** The sequence consists of perfect squares: \( 6^2, 7^2, 8^2, 9^2, 10^2 \). 4. **Type:** This is neither an arithmetic nor a geometric sequence; it is a sequence of perfect squares. ### Summary of Findings: 1. **Sequence 1:** Arithmetic sequence with a constant difference of -4. 2. **Sequence 2:** Geometric sequence with a constant ratio of \( \frac{1}{4} \). 3. **Sequence 3:** Does not fit constant difference or ratio; more complex. 4. **Sequence 4:** Sequence of perfect squares; neither arithmetic nor geometric.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

In the first sequence, the rule is to subtract 4 from the previous term. This is a constant difference, so it is classified as a constant sequence. For the second sequence, each term is obtained by dividing the previous term by 4. This is a ratio-based sequence, also known as a geometric sequence. For the third sequence, you can see that the pattern emerges where you are subtracting progressively smaller fractions. You can view this as applying a constant ratio, and it is a geometric sequence as well. Lastly, in the fourth sequence, each term is the square of consecutive integers: \(6^2, 7^2, 8^2, 9^2, 10^2\). As each term is the result of squaring the integer, it is a "quadratic" growth pattern.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad