\( \begin{array}{ll}\text { B2) } \frac{x^{10}}{x^{4}} & \text { B3) } \frac{a^{17}}{a^{2}}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To simplify the expressions, remember that when you divide powers with the same base, you subtract the exponents. For the first expression, \( \frac{x^{10}}{x^{4}} \): Subtract the exponent of the denominator from the exponent of the numerator: \( 10 - 4 = 6 \). So, \( \frac{x^{10}}{x^{4}} = x^{6} \). For the second expression, \( \frac{a^{17}}{a^{2}} \): Again, subtract the exponent of the denominator from the numerator: \( 17 - 2 = 15 \). Therefore, \( \frac{a^{17}}{a^{2}} = a^{15} \). In summary, \( \frac{x^{10}}{x^{4}} = x^{6} \) and \( \frac{a^{17}}{a^{2}} = a^{15} \).
