Pregunta
upstudy study bank question image url

Part 1 of 3 Points: 0 of 1 Save The height of women ages 20-29 is normally distributed, with a mean of 63.9 inches. Assume \( \sigma=2.7 \) inches. Are you more likely to randomly select 1 woman with a height less than 65.4 inches or are you more likely to select a sample of 18 women with a mean height less than 65.4 inches? Explain. Click the icon to view page 1 of the standard normal table. Click the icon to view page 2 of the standard normal table. What is the probability of randomly selecting 1 woman with a height less than 65.4 inches? \( \square \) (Round to four decimal places as needed.)

Ask by Watkins Bartlett. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of randomly selecting one woman with a height less than 65.4 inches is approximately 0.7123.

Solución

We are given that women's heights are normally distributed with a mean (μ) of 63.9 inches and a standard deviation (σ) of 2.7 inches. Step 1. Find the Z-score for a height of 65.4 inches using the formula:   Z = (X – μ) / σ    = (65.4 – 63.9) / 2.7    = 1.5 / 2.7    ≈ 0.5556 Step 2. Look up (or calculate) the probability P(Z < 0.5556) using the standard normal table or a calculator. This probability is approximately 0.7123. Thus, the probability of randomly selecting one woman with a height less than 65.4 inches is about 0.7123 (when rounded to four decimal places). For context, although not asked in this part, note that if we take a sample of 18 women, the standard error of the mean is σ/√n = 2.7/√18 ≈ 0.636. Then the Z-score for the sample mean being less than 65.4 inches is much higher (about 2.36), which results in a probability that is even greater. This means that it is more likely that the average height of a sample of 18 women is less than 65.4 inches than the height of one randomly selected woman is less than 65.4 inches. The answer to this part is: 0.7123.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability of randomly selecting 1 woman with a height less than 65.4 inches from a normally distributed population, we can use the z-score formula: \[ z = \frac{(X - \mu)}{\sigma} \] Where: - \( X = 65.4 \) inches (the height we are interested in) - \( \mu = 63.9 \) inches (the mean height) - \( \sigma = 2.7 \) inches (the standard deviation) First, we calculate the z-score: \[ z = \frac{(65.4 - 63.9)}{2.7} = \frac{1.5}{2.7} \approx 0.5556 \] Next, we consult the standard normal table to find the probability associated with a z-score of approximately 0.56. Referring to the table or using a calculator, we find: \[ P(Z < 0.56) \approx 0.7119 \] Thus, the probability of randomly selecting 1 woman with a height less than 65.4 inches is: **0.7119** (rounded to four decimal places).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad