Pregunta
upstudy study bank question image url

Suppose that the manufacturer of a gas clothes dryer has found that, when the unit price is \( p \) dollars, the revenue \( R \) (in dollars) is \( R(p)=-5 p^{2}+10,000 \mathrm{p} \). What unit price should be established for the dryer to maximize revenue? What is the maximum revenue? The unit price that should be established to maximize revenue is \( \$ \square \). (Simplify your answer.)

Ask by Garrett Montgomery. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To maximize revenue, set the unit price at $1,000. The maximum revenue is $5,000,000.

Solución

We are given the revenue function R(p) = –5p² + 10,000p. Since this is a quadratic function that opens downward (because the coefficient of p² is negative), its maximum revenue occurs at the vertex of the parabola. The p-coordinate of the vertex is given by the formula:   p = –(b)/(2a) Here, a = –5 and b = 10,000, so:   p = –(10,000) / (2 × –5) = 10,000/10 = 1,000 Thus, to maximize revenue, the unit price should be set at $1,000. To find the maximum revenue, substitute p = 1,000 into the revenue function:   R(1,000) = –5(1,000)² + 10,000(1,000)       = –5(1,000,000) + 10,000,000       = –5,000,000 + 10,000,000       = 5,000,000 The maximum revenue is $5,000,000. So, the unit price that should be established is $1,000, and the maximum revenue is $5,000,000.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the unit price that maximizes revenue, we can use the formula for revenue, which is given by \( R(p) = -5p^2 + 10,000p \). We need to take the derivative of \( R \) with respect to \( p \) and set it equal to zero to find the critical points: \[ R'(p) = -10p + 10,000 \] Setting the derivative equal to zero gives us: \[ -10p + 10,000 = 0 \] Solving for \( p \): \[ 10p = 10,000 \quad \Rightarrow \quad p = 1,000 \] Now, to find the maximum revenue, plug \( p = 1,000 \) back into the revenue equation: \[ R(1,000) = -5(1,000)^2 + 10,000(1,000) = -5,000,000 + 10,000,000 = 5,000,000 \] So, the unit price that should be established to maximize revenue is \( \$1,000 \). The maximum revenue is \( \$5,000,000 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad