Pregunta
upstudy study bank question image url

A Hooke's law spring is compressed a distance \( d \) and is used to launch a mass \( m \) vertically to a height \( h \) above its starting position. Under double the compression, the spring is now used to launch the mass. How high does the mass now rise above its starting position? 1) \( 2 h \) 2) \( 1.41 h \) 3) \( 3 h \) 4) \( 4 h \) 5) \( 8 h \) 4 1 \( h \)

Ask by Haynes Morrison. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

When the spring is compressed twice as much, the mass rises to a height of 4h.

Solución

The energy stored in a Hooke’s law spring compressed a distance d is given by (1/2) k d². When the spring is compressed to d, it releases an energy of (1/2) k d² which is converted into gravitational potential energy mgh, so   (1/2) k d² = mgh. Now, if we compress the spring double the distance (2d), the stored energy becomes   (1/2) k (2d)² = (1/2) k (4d²) = 4[(1/2) k d²]. Thus the energy available is 4 times greater. Set this equal to the gravitational potential energy for a new height H:   4[(1/2) k d²] = mgH. Using the original relation, replace (1/2) k d² with mgh:   4(mgh) = mgH  →  H = 4h. So the mass will rise to a height of 4h when launched from double the spring compression.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When a spring is compressed, the potential energy stored in the spring is given by the formula \( \frac{1}{2} k d^2 \), where \( k \) is the spring constant and \( d \) is the compression distance. When you double the compression to \( 2d \), the potential energy becomes \( \frac{1}{2} k (2d)^2 = 2 k d^2 \), which is four times the original energy (since \( (2d)^2 = 4d^2 \)). This extra energy translates into greater height, so the mass will rise four times as high, or \( 4h \). In terms of real-world applications, this principle has diverse uses, from catapults in ancient warfare to modern-day roller coasters. Engineers and designers utilize Hooke's law to craft systems where springs store and release energy efficiently, such as in vehicle suspension systems or various consumer products like retractable pens and toys. Understanding how compression affects performance can lead to safer and more effective designs!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad