Pregunta
upstudy study bank question image url

LET US PROVE Prove the following identities when they are defined: 1. \( \cos ^{2} x-\cos ^{2} y=\sin ^{2} y-\sin ^{2} \chi \) 2. \( \sin ^{4} x-\cos ^{4} x=(\sin x-\cos x)(\sin x+\cos x) \) 3. \( \frac{1-\cos x}{\sin x}-\frac{\sin x}{1+\cos x}=0 \) (4.) \( \frac{1}{1+\tan ^{2} x}-\frac{1}{1+\tan ^{2} y}=\sin ^{2} y-\sin ^{2} x \)

Ask by Lowe Edwards. in Lebanon
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The identities have been proven.

Solución

Let's prove each of the identities one by one. ### Identity 1: \[ \cos^2 x - \cos^2 y = \sin^2 y - \sin^2 x \] **Proof:** We can use the Pythagorean identity, which states that \(\sin^2 z + \cos^2 z = 1\). Starting with the left-hand side: \[ \cos^2 x - \cos^2 y = (\cos^2 x - 1) - (\cos^2 y - 1) = -\sin^2 x + \sin^2 y \] Thus, we have: \[ \cos^2 x - \cos^2 y = \sin^2 y - \sin^2 x \] This proves the identity. ### Identity 2: \[ \sin^4 x - \cos^4 x = (\sin x - \cos x)(\sin x + \cos x) \] **Proof:** We can use the difference of squares on the left-hand side: \[ \sin^4 x - \cos^4 x = (\sin^2 x - \cos^2 x)(\sin^2 x + \cos^2 x) \] Since \(\sin^2 x + \cos^2 x = 1\), we have: \[ \sin^4 x - \cos^4 x = \sin^2 x - \cos^2 x \] Now, we can factor \(\sin^2 x - \cos^2 x\) as: \[ \sin^2 x - \cos^2 x = (\sin x - \cos x)(\sin x + \cos x) \] Thus, we conclude: \[ \sin^4 x - \cos^4 x = (\sin x - \cos x)(\sin x + \cos x) \] This proves the identity. ### Identity 3: \[ \frac{1 - \cos x}{\sin x} - \frac{\sin x}{1 + \cos x} = 0 \] **Proof:** We will find a common denominator for the left-hand side: The common denominator is \(\sin x(1 + \cos x)\). Thus, we rewrite the left-hand side: \[ \frac{(1 - \cos x)(1 + \cos x) - \sin^2 x}{\sin x(1 + \cos x)} \] Now, simplify the numerator: \[ (1 - \cos x)(1 + \cos x) = 1 - \cos^2 x = \sin^2 x \] So, we have: \[ \sin^2 x - \sin^2 x = 0 \] Thus, the left-hand side simplifies to: \[ \frac{0}{\sin x(1 + \cos x)} = 0 \] This proves the identity. ### Identity 4: \[ \frac{1}{1 + \tan^2 x} - \frac{1}{1 + \tan^2 y} = \sin^2 y - \sin^2 x \] **Proof:** Recall that \(1 + \tan^2 z = \frac{1}{\cos^2 z}\). Therefore: \[ \frac{1}{1 + \tan^2 x} = \cos^2 x \quad \text{and} \quad \frac{1}{1 + \tan^2 y} = \cos^2 y \] Thus, the left-hand side becomes: \[ \cos^2 x - \cos^2 y \] Using the identity \(\sin^2 z = 1 - \cos^2 z\), we can rewrite the right-hand side: \[ \sin^2 y - \sin^2 x = (1 - \cos^2 y) - (1 - \cos^2 x) = \cos^2 x - \cos^2 y \] Thus, we have: \[ \cos^2 x - \cos^2 y = \sin^2 y - \sin^2 x \] This proves the identity. In conclusion, all four identities have been proven.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

First additional information: Understanding trigonometric identities is like unlocking secret codes in math! These identities are built on fundamental relationships between the angles and sides of right triangles, as well as the unit circle in the coordinate plane. It's intriguing to note that many trigonometric identities, like the Pythagorean identity or angle addition formulas, have been discovered and refined over centuries, making them a true cornerstone of mathematics. Second additional information: These trigonometric identities have practical applications beyond the classroom! Engineers, physicists, and architects rely on trigonometric identities to calculate angles, forces, and dimensions in their designs. For example, they help in determining the height of tall structures using the concept of triangulation. So, the next time you're solving these identities, think of them as tools that help bring creative ideas to life!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad