Pregunta
upstudy study bank question image url

3.1. Consider the following numbers: \( \sqrt[3]{9} ; \sqrt{9} ; \sqrt{-9} \) Which one of the above numbers is: 3.1.1. Irrational? 3.1.2. Imaginary? 3.2. Between which TWO integers does \( \sqrt{11} \) lie? 3.3. Use the long division method to calculate: \( 111111_{2} \div 1001_{2} \quad \) (leave your answer in decimal form) 3.4. Simplify the following expression fully: \( \frac{3^{x+2} .27^{x-2}}{81^{x}} \)

Ask by Brewer Mccoy. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

3.1.1. ³√9 is irrational. 3.1.2. √(–9) is imaginary. 3.2. √11 lies between 3 and 4. 3.3. 111111₂ ÷ 1001₂ = 7. 3.4. (3^(x+2) · 27^(x–2)) / (81^x) simplifies to 1/81.

Solución

3.1. We are given three numbers:  • ³√9,  • √9, and  • √(–9). 3.1.1. Which one is irrational?  • √9 = 3, which is rational since 9 is a perfect square.  • √(–9) is not a real number (it is imaginary).  • ³√9 is the cube root of 9. Since 9 is not a perfect cube, ³√9 does not simplify to a rational number. Answer: The cube root of 9 (³√9) is irrational. 3.1.2. Which one is imaginary?  • √(–9) is the square root of a negative number, which by definition is imaginary (or complex). Answer: √(–9) is imaginary. 3.2. Find the two integers between which √11 lies.  • We know that 3² = 9 and 4² = 16. Since 9 < 11 < 16, it follows that √11 is between 3 and 4. Answer: √11 lies between 3 and 4. 3.3. Use the long division method to calculate:   111111₂ ÷ 1001₂ (give the answer in decimal). Step 1. Convert the binary numbers to decimal.  • 111111₂ = 1×2⁵ + 1×2⁴ + 1×2³ + 1×2² + 1×2¹ + 1×2⁰         = 32 + 16 + 8 + 4 + 2 + 1 = 63.  • 1001₂ = 1×2³ + 0×2² + 0×2¹ + 1×2⁰         = 8 + 0 + 0 + 1 = 9. Step 2. Divide the decimal numbers.  • 63 ÷ 9 = 7. Answer: 7 3.4. Simplify the following expression fully:   (3^(x+2) · 27^(x–2)) / (81^x). Step 1. Express all numbers in the same base (base 3).  • 27 = 3³, and 81 = 3⁴. Step 2. Rewrite the expression:   = (3^(x+2) · (3³)^(x–2)) / (3^(4x))   = (3^(x+2) · 3^(3(x–2))) / (3^(4x))   = (3^(x+2) · 3^(3x–6)) / (3^(4x))   = 3^((x+2) + (3x–6)) / 3^(4x)   = 3^(4x – 4) / 3^(4x). Step 3. Use the law of exponents (subtract exponents when dividing):   = 3^((4x – 4) – 4x)   = 3^(–4)   = 1 / 3⁴   = 1 / 81. Answer: The expression simplifies to 1/81. Summary of Answers:  3.1.1. ³√9 is irrational.  3.1.2. √(–9) is imaginary.  3.2. √11 lies between 3 and 4.  3.3. 111111₂ ÷ 1001₂ = 7 (in decimal).  3.4. (3^(x+2) · 27^(x–2)) / (81^x) simplifies to 1/81.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The number \( \sqrt[3]{9} \) is irrational because it cannot be expressed as a ratio of two integers, while \( \sqrt{-9} \) is imaginary, representing 3i in the complex number system. Lastly, \( \sqrt{9} \) equals 3, which is a rational number. To find where \( \sqrt{11} \) lies, we can check the squares of integers: \( 3^2 = 9 \) and \( 4^2 = 16 \). Thus, \( \sqrt{11} \) is between 3 and 4, confirming that 3 < \( \sqrt{11} \) < 4. Next, for the long division of \( 111111_2 \) by \( 1001_2 \): First, convert both binary numbers to decimal; \( 111111_2 = 63 \) and \( 1001_2 = 9 \). Dividing 63 by 9 gives us a quotient of 7, which is our answer in decimal form. Lastly, we can simplify the expression: \( 3^{x+2} \cdot 27^{x-2} = 3^{x+2} \cdot (3^3)^{x-2} = 3^{x+2} \cdot 3^{3x-6} = 3^{(x+2+3x-6)} = 3^{4x - 4} \). Dividing by \( 81^x = (3^4)^x = 3^{4x} \) gives us \( 3^{4x-4} \div 3^{4x} = 3^{-4} = \frac{1}{81} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad