(d) \( 6 \sin 2 \mathrm{P}+\sqrt{11=0} \) with \( 2 \hat{\mathrm{P}} \in\left[270^{\circ} ; 360^{\circ}\right] \), determine the value of the following without the use of a calculator and with the aid of a diagram: \( \begin{array}{ll}\text { (1) } \cos 2 \mathrm{P} & \text { (2) } \\ \text { (e) } \\ \text { (e) } \tan ^{2} \theta=7 \text { with } \theta \in\left(-90^{\circ} ;-180^{\circ}\right) \text {, determine the value of the following without the use } \\ \text { of a calculator and with the aid of a diagram: } \\ \begin{array}{ll}\text { (1) } \cos \left(\theta+45^{\circ}\right) & \text { (2) } \sin 2 \theta\end{array}\end{array} \$ . \begin{array}{l}\text { (3) } \mathrm{P}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To tackle the equation \( 6 \sin 2P + \sqrt{11} = 0 \), we first find \( \sin 2P = -\frac{\sqrt{11}}{6} \). In the range \( \left[270^{\circ}; 360^{\circ}\right] \), the sine function is negative, indicating that \( 2P \) is in the fourth quadrant. Thus, \( 2P \) can be evaluated as \( 360^{\circ} - \theta \), where \( \theta \) is the corresponding positive angle with \( \sin \theta = \frac{\sqrt{11}}{6} \). Solving for \( P \) will give us \( P = \frac{360^{\circ} - \theta}{2} \). Now for \( \tan^2 \theta = 7 \), we can find \( \theta \) in the specified range by taking the square root, yielding \( \tan \theta = -\sqrt{7} \). Thus, referencing the tangent values, we can determine that \( \theta \) will be located in the fourth quadrant, specifically \( \theta = -\arctan(\sqrt{7}) \). We can then calculate \( \cos(\theta + 45^{\circ}) \) and \( \sin(2\theta) \) using sum and double angle formulas accordingly. Would you like summary calculations for these trigonometric results?
