Let \( g \) be the piecewise defined function shown.
\[ g(x)=\left\{\begin{array}{ll}x+4, & -5 \leq x \leq-1 \\ 2-x, & -1
Ask by Carroll Mckenzie. in the United States
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To evaluate the piecewise defined function \( g(x) \), we need to determine which part of the function applies to each input value. 1. **For \( g(-4) \):** Since \(-4\) is in the range \(-5 \leq x \leq -1\), we use the first equation: \[ g(-4) = -4 + 4 = 0. \] 2. **For \( g(-2) \):** \(-2\) also falls within the first range \(-5 \leq x \leq -1\): \[ g(-2) = -2 + 4 = 2. \] 3. **For \( g(0) \):** \(0\) falls within the second range \(-1 < x \leq 5\): \[ g(0) = 2 - 0 = 2. \] 4. **For \( g(3) \):** \(3\) is also in the second range \(-1 < x \leq 5\): \[ g(3) = 2 - 3 = -1. \] 5. **For \( g(4) \):** \(4\) remains in the second range \(-1 < x \leq 5\): \[ g(4) = 2 - 4 = -2. \] Putting it all together: - \( g(-4) = 0 \) - \( g(-2) = 2 \) - \( g(0) = 2 \) - \( g(3) = -1 \) - \( g(4) = -2 \)
