1. Solve \( -5 / 6+7 / 8 \) 2. How many sides will a regular polygon have if the measure of an exterior angle is \( 24^{\circ} \) ?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve \( -\frac{5}{6} + \frac{7}{8} \), first, find a common denominator. The least common multiple of 6 and 8 is 24. Rewrite the fractions: \( -\frac{5}{6} = -\frac{20}{24} \) and \( \frac{7}{8} = \frac{21}{24} \). Then, combine them: \( -\frac{20}{24} + \frac{21}{24} = \frac{1}{24} \). To find the number of sides in a regular polygon with an exterior angle of \( 24^{\circ} \), use the formula for the exterior angle, which is \( \frac{360^{\circ}}{n} = 24^{\circ} \). Solving for \( n \) gives you \( n = \frac{360^{\circ}}{24^{\circ}} = 15 \). So, the polygon has 15 sides!
