Pregunta
upstudy study bank question image url

Compare the monthly payments and total loan costs for the following pairs of loan options. Assume that both loans are fixed rate and have the same closing costs. You need a \( \$ 170,000 \) loan. Option 1: a 30-year loan at an APR of \( 8.5 \% \). Option 2: a 15-year loan at an APR of \( 8 \% \). Find the monthly payment for each option. The monthly payment for option 1 is \( \$ \square \). The monthly payment for option 2 is \( \$ \square \). (Do not round until the final answer. Then round to the nearest cent as needed.)

Ask by Guzman Kirk. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The monthly payment for Option 1 is $1,305.45. The monthly payment for Option 2 is $1,628.95.

Solución

We begin with the standard formula for the monthly payment on a fixed‐rate loan:   Payment = (Loan Amount × Monthly Interest Rate) ÷ [1 – (1 + Monthly Interest Rate)^(-n)] where n is the total number of payments. ────────────────────────────── Step 1. Compute the monthly payment for Option 1 • Loan Amount: L = $170,000 • Term: 30 years, so n = 30 × 12 = 360 months • APR: 8.5% per year, so the monthly interest rate is:   r = 8.5%/12 = 0.085/12 ≈ 0.00708333 Plug these into the formula:   Payment₁ = (170,000 × 0.00708333) / [1 – (1 + 0.00708333)^(-360)] First, calculate the numerator:   Numerator = 170,000 × 0.00708333 ≈ 1,203.17 Next, calculate the denominator. We have:   (1 + r)^360 = (1.00708333)^360 Taking logs (or using a calculator), one finds that:   (1.00708333)^360 ≈ 12.695 Thus,   (1 + r)^(-360) ≈ 1/12.695 ≈ 0.07874 So the denominator becomes:   Denom = 1 – 0.07874 = 0.92126 Now, the monthly payment is:   Payment₁ ≈ 1,203.17 / 0.92126 ≈ 1,305.45 ────────────────────────────── Step 2. Compute the monthly payment for Option 2 • Loan Amount: L = $170,000 • Term: 15 years, so n = 15 × 12 = 180 months • APR: 8% per year, so the monthly interest rate is:   r = 8%/12 = 0.08/12 ≈ 0.00666667 Now, use the formula:   Payment₂ = (170,000 × 0.00666667) / [1 – (1 + 0.00666667)^(-180)] First, the numerator:   Numerator = 170,000 × 0.00666667 ≈ 1,133.33 Then, compute the denominator:   (1 + r)^180 = (1.00666667)^180 A calculation gives:   (1.00666667)^180 ≈ 3.293 Thus,   (1 + r)^(-180) ≈ 1/3.293 ≈ 0.3038 So the denominator is:   Denom = 1 – 0.3038 = 0.6962 Now, the monthly payment is:   Payment₂ ≈ 1,133.33 / 0.6962 ≈ 1,628.95 ────────────────────────────── Step 3. Summary of Answers • The monthly payment for Option 1 (30‑year at 8.5%) is approximately $1,305.45. • The monthly payment for Option 2 (15‑year at 8%) is approximately $1,628.95. ────────────────────────────── Additional Note on Total Loan Costs Although Option 2 has a higher monthly payment, the total amount paid over the life of the loan is much less. To see this: • Option 1 total paid ≈ 1,305.45 × 360 ≈ $470,000   Total interest ≈ $470,000 – $170,000 = ~$300,000 • Option 2 total paid ≈ 1,628.95 × 180 ≈ $293,211   Total interest ≈ $293,211 – $170,000 = ~$123,211 ────────────────────────────── Final Answer The monthly payment for Option 1 is $1,305.45. The monthly payment for Option 2 is $1,628.95.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the monthly payments for each loan option, we can use the formula for monthly mortgage payments: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] where: - \( M \) is the total monthly mortgage payment. - \( P \) is the loan amount (principal). - \( r \) is the monthly interest rate (annual interest rate divided by 12 months). - \( n \) is the number of payments (loan term in months). **Option 1: 30-Year Loan at 8.5% APR** 1. Loan amount \( P = 170,000 \) 2. Monthly interest rate \( r = \frac{8.5\%}{100} \div 12 = 0.0070833 \) 3. Total number of payments \( n = 30 \times 12 = 360 \) Now plug the values into the formula: \[ M_1 = 170000 \cdot \frac{0.0070833(1 + 0.0070833)^{360}}{(1 + 0.0070833)^{360} - 1} \] Calculating this gives: \[ M_1 \approx 170000 \cdot \frac{0.0070833 \cdot 10.849}{9.849} \approx 170000 \cdot 0.007391 \approx 12555.2915 \] So, rounding to the nearest cent, the monthly payment for option 1 is: \[ \text{Monthly payment for option 1: } \$ 1,326.74 \] **Option 2: 15-Year Loan at 8% APR** 1. Loan amount \( P = 170,000 \) 2. Monthly interest rate \( r = \frac{8\%}{100} \div 12 = 0.0066667 \) 3. Total number of payments \( n = 15 \times 12 = 180 \) Plug the values into the formula: \[ M_2 = 170000 \cdot \frac{0.0066667(1 + 0.0066667)^{180}}{(1 + 0.0066667)^{180} - 1} \] Calculating this gives: \[ M_2 \approx 170000 \cdot \frac{0.0066667 \cdot 3.579}{2.579} \approx 170000 \cdot 0.009355 \approx 15909.147 \] So, rounding to the nearest cent, the monthly payment for option 2 is: \[ \text{Monthly payment for option 2: } \$ 1,254.73 \] **Final Monthly Payments:** - The monthly payment for option 1 is \( \$ 1,326.74 \). - The monthly payment for option 2 is \( \$ 1,254.73 \).

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad