Given that \( \sin \alpha=\frac{4}{7} \) and \( 90^{\circ}<\alpha<180^{\circ} \), find \( \sin 2 \alpha \) and \( \cos 2 \alpha \). \( \sin 2 \alpha=\square \cos 2 \alpha=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find \( \sin 2\alpha \) and \( \cos 2\alpha \), we can use the double angle identities. The double angle formulas are \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha \] and \[ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha. \] We already know \( \sin \alpha = \frac{4}{7} \). Since \( \alpha \) is in the second quadrant (\( 90^{\circ} < \alpha < 180^{\circ} \)), we can find \( \cos \alpha \) using the Pythagorean identity: \[ \cos^2 \alpha + \sin^2 \alpha = 1. \] Substituting \( \sin \alpha \): \[ \cos^2 \alpha + \left(\frac{4}{7}\right)^2 = 1 \\ \cos^2 \alpha + \frac{16}{49} = 1 \\ \cos^2 \alpha = 1 - \frac{16}{49} = \frac{49}{49} - \frac{16}{49} = \frac{33}{49}. \] Since \( \alpha \) is in the second quadrant, \( \cos \alpha \) is negative: \[ \cos \alpha = -\sqrt{\frac{33}{49}} = -\frac{\sqrt{33}}{7}. \] Now we can find \( \sin 2\alpha \): \[ \sin 2\alpha = 2 \sin \alpha \cos \alpha = 2 \left(\frac{4}{7}\right) \left(-\frac{\sqrt{33}}{7}\right) = -\frac{8\sqrt{33}}{49}. \] Next, we calculate \( \cos 2\alpha \): \[ \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = \left(-\frac{\sqrt{33}}{7}\right)^2 - \left(\frac{4}{7}\right)^2 \\ = \frac{33}{49} - \frac{16}{49} = \frac{17}{49}. \] Finally, we have: \[ \sin 2\alpha = -\frac{8\sqrt{33}}{49}, \quad \cos 2\alpha = \frac{17}{49}. \] So, the final result is: \[ \sin 2 \alpha = -\frac{8\sqrt{33}}{49}, \quad \cos 2 \alpha = \frac{17}{49}. \]
