Pregunta
upstudy study bank question image url

The mass of a radioactive substance follows a continuous exponential decay model. A sample of this radioactive substance has an initial mass of 3691 kg and decreases continuously at a relative rate of \( 9 \% \) per day. Find the mass of the sample after six days. Do not round any intermediate computations, and round your answer to the nearest tenth.

Ask by Ellis Bowman. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After six days, the mass of the radioactive sample is approximately 2148.2 kg.

Solución

To solve the problem of finding the mass of a radioactive substance after six days, we can use the continuous exponential decay formula: \[ M(t) = M_0 e^{-kt} \] where: - \( M(t) \) is the mass at time \( t \), - \( M_0 \) is the initial mass, - \( k \) is the decay constant (relative rate of decay), - \( t \) is the time in days, - \( e \) is the base of the natural logarithm. ### Step 1: Identify the known values - Initial mass, \( M_0 = 3691 \) kg - Relative rate of decay, \( k = 0.09 \) (since \( 9\% = 0.09 \)) - Time, \( t = 6 \) days ### Step 2: Substitute the values into the formula We need to calculate \( M(6) \): \[ M(6) = 3691 e^{-0.09 \times 6} \] ### Step 3: Calculate the exponent First, calculate the exponent: \[ -0.09 \times 6 = -0.54 \] ### Step 4: Calculate \( e^{-0.54} \) Now we need to calculate \( e^{-0.54} \): \[ e^{-0.54} \approx 0.582 \] ### Step 5: Calculate the mass after 6 days Now substitute back into the mass formula: \[ M(6) = 3691 \times 0.582 \] ### Step 6: Perform the multiplication Now we calculate: \[ M(6) = 3691 \times 0.582 \] Let's calculate this value. Calculate the value by following steps: - step0: Calculate: \(3691\times 0.582\) - step1: Multiply the numbers: \(2148.162\) The calculation gives us: \[ M(6) \approx 2148.162 \text{ kg} \] ### Step 7: Round the result Rounding this to the nearest tenth, we get: \[ M(6) \approx 2148.2 \text{ kg} \] ### Final Answer The mass of the sample after six days is approximately **2148.2 kg**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the mass of the sample after six days, we can use the formula for continuous exponential decay, which is given by: \[ M(t) = M_0 e^{-kt} \] where: - \( M(t) \) is the mass at time \( t \), - \( M_0 \) is the initial mass, - \( k \) is the decay constant (in this case, \( k = 0.09 \) for a \( 9\% \) decay rate), - \( t \) is the elapsed time (in days), - \( e \) is the base of the natural logarithm (approximately 2.71828). Given: - \( M_0 = 3691 \text{ kg} \), - \( k = 0.09 \), - \( t = 6 \text{ days} \). Plugging in the values, we have: \[ M(6) = 3691 e^{-0.09 \times 6} \] Calculating the exponent: \[ -0.09 \times 6 = -0.54 \] Now, finding \( e^{-0.54} \): Using a calculator, we find: \[ e^{-0.54} \approx 0.582 \] Now substituting back into the mass equation: \[ M(6) = 3691 \times 0.582 \] Calculating this gives: \[ M(6) \approx 2141.862 \] Rounding to the nearest tenth, the mass of the sample after six days is approximately: **2141.9 kg**.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad