Solve for \( w \). \[ 2+\frac{5}{w-6}=\frac{3}{w-6} \] If there is more than one solution, separate them with commas. If there is no solution, click on "No solution". \[ \begin{array}{ll}\square\end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To solve the equation \[ 2+\frac{5}{w-6}=\frac{3}{w-6}, \] we first subtract \(\frac{3}{w-6}\) from both sides: \[ 2 + \frac{5}{w-6} - \frac{3}{w-6} = 0. \] This simplifies to: \[ 2 + \frac{2}{w-6} = 0. \] Now, we isolate the fraction: \[ \frac{2}{w-6} = -2. \] Next, we cross-multiply: \[ 2 = -2(w - 6). \] Distributing \(-2\) gives us: \[ 2 = -2w + 12. \] Now we rearrange it: \[ 2w = 12 - 2, \] \[ 2w = 10, \] \[ w = 5. \] Finally, we should check if \(w=5\) would make the original equation undefined by substituting back into the denominator \(w - 6\): \[ 5 - 6 = -1 \neq 0. \] Thus, the solution for \(w\) is: \[ \boxed{5}. \]
