Pregunta
Add. \( \frac{4}{c+3}+\frac{7}{c+3} \) simplify your answer as much as possible.
Ask by Watson Ryan. in the United States
Jan 29,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\[
\frac{11}{c + 3}
\]
Solución
To add the fractions \(\frac{4}{c+3}\) and \(\frac{7}{c+3}\), follow these steps:
1. **Ensure the denominators are the same:**
Both fractions have the same denominator, \(c + 3\).
2. **Add the numerators:**
\[
\frac{4}{c+3} + \frac{7}{c+3} = \frac{4 + 7}{c + 3}
\]
3. **Simplify the numerator:**
\[
\frac{4 + 7}{c + 3} = \frac{11}{c + 3}
\]
**Final Simplified Form:**
\[
\frac{11}{c + 3}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
When you add the fractions \( \frac{4}{c+3} + \frac{7}{c+3} \), you can combine them since they have the same denominator. This gives you \( \frac{4 + 7}{c + 3} = \frac{11}{c + 3} \). So, the simplified form of the expression is \( \frac{11}{c + 3} \). Now, remember that this expression is valid as long as \( c \neq -3 \) because that would make the denominator zero, which is undefined in mathematics!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium