Pregunta
\[ \text{Find } 2011^2 - 2010^2 \text{?} \]
Ask by Hammond Crawford. in Nigeria
Feb 22,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The answer is 4021.
Solución
We can use the difference of squares formula, which states:
a² - b² = (a + b)(a - b)
Here, let a = 2011 and b = 2010. Then:
2011² - 2010² = (2011 + 2010)(2011 - 2010)
= (4021)(1)
= 4021
So, the answer is 4021.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To solve \(2011^2 - 2010^2\), we can use the difference of squares formula, which states that \(a^2 - b^2 = (a-b)(a+b)\). Here, let \(a = 2011\) and \(b = 2010\). Calculating \(a - b\) gives: \[ 2011 - 2010 = 1 \] Calculating \(a + b\) gives: \[ 2011 + 2010 = 4021 \] Now, using the difference of squares formula: \[ 2011^2 - 2010^2 = (2011 - 2010)(2011 + 2010) = 1 \times 4021 = 4021 \] So, \(2011^2 - 2010^2 = 4021\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium