Pregunta
upstudy study bank question image url

Simplify the following without the use of a calculator: \( \frac{\cos \left(40^{\circ}-x\right) \cos x-\sin \left(40^{\circ}-x\right) \sin x}{\sin 205^{\circ} \cos 155^{\circ}} \) Calculate the value of \( \frac{\cos 2^{\circ}+\sqrt{3} \sin \left(-2^{\circ}\right)}{4 \sin 346^{\circ} \cos 194^{\circ}} \) without the use of a calculator.

Ask by Marsh Daniel. in South Africa
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The first expression simplifies to 2, and the second expression evaluates to 1.

Solución

We will simplify each expression step‐by‐step. ───────────────────────────── 1) Simplify   ( cos(40° – x) cos x – sin(40° – x) sin x ) / ( sin205° · cos155° ). Step 1.1. Simplify the numerator. Recall the cosine addition formula:   cos A cos B – sin A sin B = cos(A + B). Here, let A = (40° – x) and B = x. Then:   cos(40° – x) cos x – sin(40° – x) sin x = cos[(40° – x) + x] = cos 40°. Step 1.2. Simplify the denominator. Examine sin205°:   205° = 180° + 25° → sin205° = – sin25°. Examine cos155°:   155° = 180° – 25° → cos155° = – cos25°. So, their product is:   sin205° · cos155° = (– sin25°)(– cos25°) = sin25° cos25°. Step 1.3. Write the simplified expression. We now have:   cos40° / (sin25° cos25°). Step 1.4. Use the double-angle identity. Note that:   2 sin25° cos25° = sin50° → sin25° cos25° = sin50°/2. Thus, the expression becomes:   cos40° / (sin50°/2) = (2 cos40°) / sin50°. Step 1.5. Recognize the co-function relationship. Since cos40° = sin(90° – 40°) = sin50°, we have:   (2 cos40°) / sin50° = 2(sin50°)/ sin50° = 2. So the first expression simplifies to 2. ───────────────────────────── 2) Calculate   ( cos2° + √3 sin(–2°) ) / ( 4 sin346° · cos194° ). Step 2.1. Simplify the numerator. Notice that sin(–2°) = – sin2°. Therefore:   cos2° + √3 sin(–2°) = cos2° – √3 sin2°. Factor a 2 in a clever way by writing:   cos2° – √3 sin2° = 2[(1/2) cos2° – (√3/2) sin2°]. Recall that cos60° = 1/2 and sin60° = √3/2. Hence:   (1/2) cos2° – (√3/2) sin2° = cos2° cos60° – sin2° sin60° = cos(2° + 60°) = cos62°. Thus, the numerator becomes:   2 cos62°. Step 2.2. Simplify the denominator. First, consider sin346°:   346° = 360° – 14° → sin346° = – sin14°. Next, cos194°:   194° = 180° + 14° → cos194° = – cos14°. So, their product is:   sin346° · cos194° = (– sin14°)(– cos14°) = sin14° cos14°. Thus, the denominator becomes:   4 sin14° cos14°. Use the double-angle identity:   2 sin14° cos14° = sin28° → 4 sin14° cos14° = 2 sin28°. Step 2.3. Combine the results. Now the expression is:   (2 cos62°) / (2 sin28°) = cos62° / sin28°. Step 2.4. Use a co-function identity. Since sin28° = cos(90° – 28°) = cos62°, we find:   cos62° / sin28° = cos62° / cos62° = 1. So the second expression evaluates to 1. ───────────────────────────── Final Answers: 1) The expression simplifies to 2. 2) The value of the second expression is 1.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To simplify the fraction \( \frac{\cos \left(40^{\circ}-x\right) \cos x-\sin \left(40^{\circ}-x\right) \sin x}{\sin 205^{\circ} \cos 155^{\circ}} \), we can employ the cosine angle subtraction formula: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B. \] In our case, \( A = 40^{\circ} \) and \( B = x \). Thus, \[ \cos(40^{\circ} - x) \cos x - \sin(40^{\circ} - x) \sin x = \cos(40^{\circ} + x). \] Now, for the denominator: \[ \sin 205^{\circ} = \sin(180^{\circ} + 25^{\circ}) = -\sin 25^{\circ}, \] and \[ \cos 155^{\circ} = \cos(180^{\circ} - 25^{\circ}) = -\cos 25^{\circ}. \] Thus, \[ \sin 205^{\circ} \cos 155^{\circ} = (-\sin 25^{\circ})(-\cos 25^{\circ}) = \sin 25^{\circ} \cos 25^{\circ} = \frac{1}{2} \sin(50^{\circ}). \] Now, substituting back, the expression simplifies to: \[ \frac{\cos(40^{\circ} + x)}{\frac{1}{2} \sin(50^{\circ})} = \frac{2 \cos(40^{\circ} + x)}{\sin(50^{\circ})}. \] We know that \( \sin(50^{\circ}) = \cos(40^{\circ}) \), thus finally, the entire expression simplifies to: \[ \frac{2 \cos(40^{\circ} + x)}{\cos(40^{\circ})}. \] Next, we calculate \( \frac{\cos 2^{\circ} + \sqrt{3} \sin(-2^{\circ})}{4 \sin 346^{\circ} \cos 194^{\circ}} \). First, let’s simplify the numerator: \[ \sin(-2^{\circ}) = -\sin 2^{\circ}, \] Thus, \[ \cos 2^{\circ} + \sqrt{3} \sin(-2^{\circ}) = \cos 2^{\circ} - \sqrt{3}\sin 2^{\circ}. \] For the denominator: \[ \sin 346^{\circ} = \sin(360^{\circ} - 14^{\circ}) = -\sin 14^{\circ}, \] and \[ \cos 194^{\circ} = \cos(180^{\circ} + 14^{\circ}) = -\cos 14^{\circ}. \] Thus, \[ 4 \sin 346^{\circ} \cos 194^{\circ} = 4 (-\sin 14^{\circ})(-\cos 14^{\circ}) = 4 \sin 14^{\circ} \cos 14^{\circ} = 2 \sin 28^{\circ}. \] Finally, putting it all together, we have: \[ \frac{\cos 2^{\circ} - \sqrt{3} \sin 2^{\circ}}{2 \sin 28^{\circ}}. \] We can further simplify if needed, but this represents the expression without a calculator.

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad