Pregunta
upstudy study bank question image url

12. \( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(x^{3}+x^{4} \tan x\right) d x= \) (a) 0 (b) \( \frac{\pi}{2} \) (c) \( -\frac{\pi}{2} \) (d) \( \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right) \) (e) \( \left(\frac{\pi}{4}\right)^{4} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right) \)

Ask by Hill Mccarthy. in Saudi Arabia
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral of \( x^{3} + x^{4} \tan x \) from \( -\frac{\pi}{4} \) to \( \frac{\pi}{4} \) is 0 because both terms are odd functions, and the integral of an odd function over a symmetric interval is zero.

Solución

The key observation here is that both functions in the integrand are odd functions. Here's the step‐by‐step reasoning: 1. The first term, x³, is an odd function, because (–x)³ = –x³. 2. For the second term, note that x⁴ is even (since (–x)⁴ = x⁴) and tan x is odd (because tan(–x) = –tan x). The product of an even and an odd function is odd. 3. The integral of any odd function over an interval symmetric about zero (i.e., from –a to a) is 0. Since both x³ and x⁴ tan x are odd, their integrals over [–π/4, π/4] are 0. Therefore, the answer is (a) 0.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the integral \( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\left(x^{3}+x^{4} \tan x\right) d x \), we can analyze the integrand's symmetry properties. The function \( x^3 \) is an odd function, meaning it has the property that \( f(-x) = -f(x) \). Therefore, the integral of an odd function over a symmetric interval around zero (like \(-\frac{\pi}{4}\) to \(\frac{\pi}{4}\)) is zero. Conversely, \( x^4 \tan x \) is an even function, as it satisfies \( f(-x) = f(x) \). However, since the integral of the odd part \( x^3 \) contributes zero, we can conclude that the full integral evaluates to: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (x^3 + x^4 \tan x) \, dx = 0 + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} x^4 \tan x \, dx \] But since the integral of \( x^3 \) is zero, the resulting integral remains \( 0 \). Therefore, the answer is: (a) 0

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad