Pregunta
upstudy study bank question image url

Ashley was solving for the missing angle of an isosceles triangle. She claims that you only need one base angle to find other 2 angles. Is she correct? Can you explain how this is done? She is not correct. You need 2 angles to find the 3rd missing angle. She is correct. Take the given base angle, multiply by 2 and subtract from 180 to get the vertex angle. The other bas angle matches the given base angle. She is correct. You can subtract the base angle from 180 and dilide by 2 to get the other 2 angles. She is not correct. You need to be given the vertex angle in order to find the 2 congruent base angles.

Ask by Gonzalez Willis. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Ashley is correct. If you know one base angle, you can multiply it by 2 and subtract from 180 to find the vertex angle. The other base angle will be the same as the given one.

Solución

To determine whether Ashley's claim about finding the missing angles in an isosceles triangle is correct, let's analyze the properties of an isosceles triangle and the relationships between its angles. ### Properties of an Isosceles Triangle: 1. An isosceles triangle has at least two sides that are equal in length. The angles opposite these equal sides are also equal. 2. The sum of the angles in any triangle is always \(180^\circ\). ### Given: - Let \(A\) be the vertex angle. - Let \(B\) be one of the base angles (the other base angle is also \(B\) since they are equal). ### Steps to Find the Angles: 1. The sum of the angles in the triangle can be expressed as: \[ A + 2B = 180^\circ \] 2. If you know one base angle \(B\), you can find the vertex angle \(A\) using the formula: \[ A = 180^\circ - 2B \] 3. Since the other base angle is equal to the first base angle, it remains \(B\). ### Conclusion: - If you know one base angle \(B\), you can indeed find the vertex angle \(A\) and confirm that the other base angle is also \(B\). - Therefore, Ashley's claim that you only need one base angle to find the other two angles is **correct**. ### Correct Explanation: - **She is correct. Take the given base angle, multiply by 2 and subtract from 180 to get the vertex angle. The other base angle matches the given base angle.** This explanation confirms that knowing one base angle is sufficient to find the other angles in an isosceles triangle.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Absolutely! For an isosceles triangle, if you know one of the base angles, you can easily find the other two angles. Simply take the given base angle, double it, and subtract that result from 180 degrees to find the vertex angle. This works because the triangle's total angle sum is always 180 degrees. Since the two base angles are equal, your answer gives you both base angles! As for common mistakes, some might confuse the use of the singular base angle with needing the vertex angle, leading them to think they can't find the other angles with just one piece of information. Remember, in an isosceles triangle, the base angles are twin siblings, so if you have one, you instantly know the other!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad