Pregunta
upstudy study bank question image url

Khloe is going to invest in an account paying an interest rate of \( 1.5 \% \) compounded annually. How much would Khloe need to invest, to the nearest dollar, for the value of the account to reach \( \$ 54,000 \) in 11 years?

Ask by Murphy Graham. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Khloe needs to invest approximately \$45,842 to reach \$54,000 in 11 years with a 1.5% annual interest rate compounded annually.

Solución

To find out how much Khloe needs to invest to reach a value of $54,000 in 11 years with an annual interest rate of 1.5% compounded annually, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{100}\right)^n \] where: - \( A \) is the future value of the investment, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate (in %), - \( n \) is the number of years. Given: - \( A = \$54,000 \), - \( r = 1.5\% \), - \( n = 11 \) years. We need to solve for \( P \) to find out how much Khloe needs to invest. Solve the equation by following steps: - step0: Solve for \(P\): \(54000=P\left(1+\frac{1.5}{100}\right)^{11}\) - step1: Simplify: \(54000=\frac{203^{11}}{200^{11}}\times P\) - step2: Swap the sides: \(\frac{203^{11}}{200^{11}}\times P=54000\) - step3: Rewrite the expression: \(\frac{203^{11}P}{200^{11}}=54000\) - step4: Cross multiply: \(203^{11}P=200^{11}\times 54000\) - step5: Simplify the equation: \(203^{11}P=54000\times 200^{11}\) - step6: Divide both sides: \(\frac{203^{11}P}{203^{11}}=\frac{54000\times 200^{11}}{203^{11}}\) - step7: Divide the numbers: \(P=\frac{54000\times 200^{11}}{203^{11}}\) The amount Khloe needs to invest to reach a value of $54,000 in 11 years with an annual interest rate of 1.5% compounded annually is: \[ P = \frac{54000 \times 200^{11}}{203^{11}} \] To find the value of \( P \) to the nearest dollar, we can calculate it. Calculate the value by following steps: - step0: Calculate: \(\frac{54000\times 200^{11}}{203^{11}}\) Khloe needs to invest approximately $45,842.39 to reach a value of $54,000 in 11 years with an annual interest rate of 1.5% compounded annually.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine how much Khloe needs to invest now, we can use the formula for compound interest: \[ A = P(1 + r)^t \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the number of years the money is invested for. Rearranging the formula to find \( P \): \[ P = \frac{A}{(1 + r)^t} \] Given: - \( A = 54,000 \) - \( r = 0.015 \) (which is \( 1.5\% \)) - \( t = 11 \) Plugging in the values: \[ P = \frac{54000}{(1 + 0.015)^{11}} \] Calculating \( (1 + 0.015)^{11} \): \[ (1.015)^{11} \approx 1.171659 \] Now, substituting back into the formula: \[ P \approx \frac{54000}{1.171659} \approx 46,063.96 \] Rounding to the nearest dollar, Khloe would need to invest approximately **$46,064**. Happy investing, Khloe!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad