b. \( 3 \tan ^{2} 45^{\circ}-\sin ^{2} 60^{\circ}-\frac{1}{2} \cot ^{2} 30^{\circ}+\frac{1}{8} \sec ^{2} 45^{\circ} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To evaluate the expression \( 3 \tan ^{2} 45^{\circ}-\sin ^{2} 60^{\circ}-\frac{1}{2} \cot ^{2} 30^{\circ}+\frac{1}{8} \sec ^{2} 45^{\circ} \), we start by calculating each trigonometric function involved: 1. \( \tan 45^{\circ} = 1 \), therefore \( \tan^{2} 45^{\circ} = 1 \) and \( 3 \tan^{2} 45^{\circ} = 3 \). 2. \( \sin 60^{\circ} = \frac{\sqrt{3}}{2} \), thus \( \sin^{2} 60^{\circ} = \left(\frac{\sqrt{3}}{2}\right)^{2} = \frac{3}{4} \). 3. \( \cot 30^{\circ} = \frac{1}{\tan 30^{\circ}} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \), hence \( \cot^{2} 30^{\circ} = 3 \) and \( \frac{1}{2} \cot^{2} 30^{\circ} = \frac{3}{2} \). 4. \( \sec 45^{\circ} = \frac{1}{\cos 45^{\circ}} = \sqrt{2} \), therefore \( \sec^{2} 45^{\circ} = 2 \) and \( \frac{1}{8} \sec^{2} 45^{\circ} = \frac{1}{4} \). Now, substituting these values into the expression gives us: \[ 3 - \frac{3}{4} - \frac{3}{2} + \frac{1}{4}. \] Converting to a common denominator (4): \[ = \frac{12}{4} - \frac{3}{4} - \frac{6}{4} + \frac{1}{4} = \frac{12 - 3 - 6 + 1}{4} = \frac{4}{4} = 1. \] Therefore, the value of the expression is \( 1 \).
