Pregunta
upstudy study bank question image url

b. \( 3 \tan ^{2} 45^{\circ}-\sin ^{2} 60^{\circ}-\frac{1}{2} \cot ^{2} 30^{\circ}+\frac{1}{8} \sec ^{2} 45^{\circ} \)

Ask by Rojas Lynch. in Nepal
Nov 12,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The final result is 1.

Solución

To evaluate the expression \[ 3 \tan^{2} 45^{\circ} - \sin^{2} 60^{\circ} - \frac{1}{2} \cot^{2} 30^{\circ} + \frac{1}{8} \sec^{2} 45^{\circ}, \] we will calculate each trigonometric function step by step. 1. **Calculate \( \tan 45^{\circ} \)**: \[ \tan 45^{\circ} = 1 \implies \tan^{2} 45^{\circ} = 1^{2} = 1. \] Therefore, \[ 3 \tan^{2} 45^{\circ} = 3 \cdot 1 = 3. \] 2. **Calculate \( \sin 60^{\circ} \)**: \[ \sin 60^{\circ} = \frac{\sqrt{3}}{2} \implies \sin^{2} 60^{\circ} = \left(\frac{\sqrt{3}}{2}\right)^{2} = \frac{3}{4}. \] 3. **Calculate \( \cot 30^{\circ} \)**: \[ \cot 30^{\circ} = \frac{1}{\tan 30^{\circ}} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \implies \cot^{2} 30^{\circ} = (\sqrt{3})^{2} = 3. \] Therefore, \[ -\frac{1}{2} \cot^{2} 30^{\circ} = -\frac{1}{2} \cdot 3 = -\frac{3}{2}. \] 4. **Calculate \( \sec 45^{\circ} \)**: \[ \sec 45^{\circ} = \frac{1}{\cos 45^{\circ}} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \implies \sec^{2} 45^{\circ} = (\sqrt{2})^{2} = 2. \] Therefore, \[ \frac{1}{8} \sec^{2} 45^{\circ} = \frac{1}{8} \cdot 2 = \frac{2}{8} = \frac{1}{4}. \] Now, we can substitute all these values back into the original expression: \[ 3 - \frac{3}{4} - \frac{3}{2} + \frac{1}{4}. \] Next, we need a common denominator to combine these fractions. The common denominator for \(4\) and \(2\) is \(4\): - Convert \(3\) to a fraction with a denominator of \(4\): \[ 3 = \frac{12}{4}. \] - Convert \(-\frac{3}{2}\) to a fraction with a denominator of \(4\): \[ -\frac{3}{2} = -\frac{6}{4}. \] Now we can rewrite the expression: \[ \frac{12}{4} - \frac{3}{4} - \frac{6}{4} + \frac{1}{4}. \] Combine the fractions: \[ \frac{12 - 3 - 6 + 1}{4} = \frac{4}{4} = 1. \] Thus, the final result is \[ \boxed{1}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To evaluate the expression \( 3 \tan ^{2} 45^{\circ}-\sin ^{2} 60^{\circ}-\frac{1}{2} \cot ^{2} 30^{\circ}+\frac{1}{8} \sec ^{2} 45^{\circ} \), we start by calculating each trigonometric function involved: 1. \( \tan 45^{\circ} = 1 \), therefore \( \tan^{2} 45^{\circ} = 1 \) and \( 3 \tan^{2} 45^{\circ} = 3 \). 2. \( \sin 60^{\circ} = \frac{\sqrt{3}}{2} \), thus \( \sin^{2} 60^{\circ} = \left(\frac{\sqrt{3}}{2}\right)^{2} = \frac{3}{4} \). 3. \( \cot 30^{\circ} = \frac{1}{\tan 30^{\circ}} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3} \), hence \( \cot^{2} 30^{\circ} = 3 \) and \( \frac{1}{2} \cot^{2} 30^{\circ} = \frac{3}{2} \). 4. \( \sec 45^{\circ} = \frac{1}{\cos 45^{\circ}} = \sqrt{2} \), therefore \( \sec^{2} 45^{\circ} = 2 \) and \( \frac{1}{8} \sec^{2} 45^{\circ} = \frac{1}{4} \). Now, substituting these values into the expression gives us: \[ 3 - \frac{3}{4} - \frac{3}{2} + \frac{1}{4}. \] Converting to a common denominator (4): \[ = \frac{12}{4} - \frac{3}{4} - \frac{6}{4} + \frac{1}{4} = \frac{12 - 3 - 6 + 1}{4} = \frac{4}{4} = 1. \] Therefore, the value of the expression is \( 1 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad