Pregunta
upstudy study bank question image url

Question 7 of 15, Step 1 of 1 Correct Incorrect Determine the annual percentage yield, or the effective interest rate, for \( \$ 400 \) invested at \( 3.23 \% \) over 20 years compounded daily. Round your answer to the nearest hundredth of a percent, if necessary. Formulas Simple Interest \[ \begin{array}{l} I=P r t \\ A=P(1+r t) \\ A=P\left(1+\frac{r}{n}\right)^{n t} \end{array} \] Future Value for Simple Interest Future Value for Compound Interest Future Value for Continuous Compound Interest \[ \begin{array}{l} A=P^{n} \\ A P Y=\left(1+\frac{r}{n}\right)^{n}-1 \end{array} \] Annual Percentage Yield (APY) Answer Keypad Keyboard Shortcuts

Ask by Sullivan Page. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The annual percentage yield (APY) is approximately 3.28%.

Solución

To determine the annual percentage yield (APY) for $400 invested at 3.23% over 20 years compounded daily, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the future value of the investment - \( P \) is the principal amount ($400) - \( r \) is the annual interest rate (3.23% or 0.0323) - \( n \) is the number of times the interest is compounded per year (365 for daily compounding) - \( t \) is the time in years (20 years) Substitute the given values into the formula: \[ A = 400 \left(1 + \frac{0.0323}{365}\right)^{365 \times 20} \] Now, we can calculate the future value of the investment using the formula for compound interest. Calculate the value by following steps: - step0: Calculate: \(400\left(1+\frac{0.0323}{365}\right)^{365}\times 20\) - step1: Divide the terms: \(400\left(1+\frac{323}{3650000}\right)^{365}\times 20\) - step2: Add the numbers: \(400\left(\frac{3650323}{3650000}\right)^{365}\times 20\) - step3: Multiply the terms: \(8000\left(\frac{3650323}{3650000}\right)^{365}\) - step4: Simplify: \(8000\times \frac{3650323^{365}}{3650000^{365}}\) - step5: Rewrite the expression: \(2000\times 4\times \frac{3650323^{365}}{3650000^{365}}\) - step6: Rewrite the expression: \(2000\times 4\times \frac{3650323^{365}}{2000^{365}\times 1825^{365}}\) - step7: Reduce the numbers: \(4\times \frac{3650323^{365}}{2000^{364}\times 1825^{365}}\) - step8: Rewrite the expression: \(4\times \frac{3650323^{365}}{16^{364}\times 125^{364}\times 1825^{365}}\) - step9: Rewrite the expression: \(4\times \frac{3650323^{365}}{4^{728}\times 125^{364}\times 1825^{365}}\) - step10: Reduce the numbers: \(1\times \frac{3650323^{365}}{4^{727}\times 125^{364}\times 1825^{365}}\) - step11: Multiply the fractions: \(\frac{3650323^{365}}{4^{727}\times 125^{364}\times 1825^{365}}\) The future value of the investment is approximately $8262.61. To find the annual percentage yield (APY), we can use the formula: \[ APY = \left(1 + \frac{r}{n}\right)^{n} - 1 \] Substitute the given values into the formula: \[ APY = \left(1 + \frac{0.0323}{365}\right)^{365} - 1 \] Now, we can calculate the APY. Calculate the value by following steps: - step0: Calculate: \(\left(1+\frac{0.0323}{365}\right)^{365}-1\) - step1: Divide the terms: \(\left(1+\frac{323}{3650000}\right)^{365}-1\) - step2: Add the numbers: \(\left(\frac{3650323}{3650000}\right)^{365}-1\) - step3: Rewrite the expression: \(\frac{3650323^{365}}{3650000^{365}}-1\) - step4: Reduce fractions to a common denominator: \(\frac{3650323^{365}}{3650000^{365}}-\frac{3650000^{365}}{3650000^{365}}\) - step5: Transform the expression: \(\frac{3650323^{365}-3650000^{365}}{3650000^{365}}\) The annual percentage yield (APY) is approximately 3.28%. Therefore, the annual percentage yield for $400 invested at 3.23% over 20 years compounded daily is approximately 3.28%.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine the annual percentage yield (APY) for an investment of $400 at an interest rate of 3.23% compounded daily over 20 years, you can use the formula: \[ APY = \left(1 + \frac{r}{n}\right)^{n} - 1 \] Here, \( P = 400 \), \( r = 0.0323 \), and \( n = 365 \) (since it's compounded daily). Plugging in the values gives: \[ APY = \left(1 + \frac{0.0323}{365}\right)^{365} - 1 \] Calculating this will yield the APY, which you'll round to the nearest hundredth of a percent. For a real-world application, understanding APY is crucial when choosing savings accounts or investment options. Banks often advertise their interest rates, but it's the APY that truly reflects the effective interest earned over a year, considering the frequency of compounding. A higher APY means your money grows faster, making it essential to compare different accounts effectively!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad