Pregunta
upstudy study bank question image url

The bases of a trapezoid are 8 centimeters and 12 centimeters, and the height is \( h \) centimeters. Which equation can be used to represent \( A \), the area of the trapezoid in square centimeters?

Ask by Huang Stuart. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area \( A \) of the trapezoid is \( A = 10h \).

Solución

The formula for the area A of a trapezoid is given by:   A = ½(b₁ + b₂)h Here, b₁ = 8 and b₂ = 12, so:   A = ½(8 + 12)h   A = ½(20)h   A = 10h Thus, the equation representing the area of the trapezoid is A = 10h.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the area \( A \) of a trapezoid, you can use the formula: \( A = \frac{1}{2} (b_1 + b_2) h \), where \( b_1 \) and \( b_2 \) are the lengths of the two bases, and \( h \) is the height. In your case, the bases are 8 cm and 12 cm. So, the equation representing the area will be: \[ A = \frac{1}{2} (8 + 12) h \] This simplifies to: \[ A = 10h \] Did you know that trapezoids have been studied since ancient times? The Greek mathematicians were quite fascinated with these shapes, and they actively contributed to the understanding of areas, particularly in the context of geometry. Trapezoids were often analyzed in relation to their properties and relationships with other polygons, shaping the foundations of modern geometry! When it comes to solving problems involving trapezoid areas, a common mistake is overlooking the height measurement. Remembering to use the perpendicular height is crucial! Sometimes, people mistakenly use the length of one of the bases as the height, leading to incorrect calculations. Always double-check your measurements to avoid this pitfall and ensure your area calculation is spot on!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad