Pregunta
upstudy study bank question image url

IntegratedAssignmentOverview.aspx?homeworkld=687973034 Yvonne Manes 02/27/25 7:06 PM Question Completed: 19 of 29 |My score: \( 19 / 29 \) pts ( \( 65.52 \% \) ) Save Part 1 of 5 Researchers selected 858 patients at random among those who take a certain widely-used prescription drug daily. In a clinical trial, 23 out of the 858 patients complained of flulike symptoms. Suppose that it is known that \( 2.3 \% \) of patients taking competing drugs complain of flulike symptoms. Is there sufficient evidence to conclude that more than \( 2.3 \% \) of this drug's users experience flulike symptoms as a side effect at the \( \alpha=0.1 \) level of significance? Because \( n p_{0}\left(1-p_{0}\right)= \) \( \square \) 10, the sample size is less than \( 5 \% \) of the population size, and the patients in the sample were selected at random, all of the requirements for testing the hypothesis are not satisfied. (Round to one decimal place as needed.)

Ask by Simpson Bowen. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Fill in the blank with 19.3.

Solución

We check the large‐sample condition by verifying that  n · p₀(1 – p₀) ≥ 10. Here n = 858 and p₀ = 0.023 (2.3%), so  n · p₀(1 – p₀) = 858 × 0.023 × (1 – 0.023)            ≈ 858 × 0.023 × 0.977            ≈ 858 × 0.022471            ≈ 19.3. Since 19.3 is greater than 10, that requirement is satisfied (given also that the sample size is less than 5% of the population and the sample was randomly selected). Thus, the number to fill in the blank is 19.3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle this hypothesis testing situation, we first need to compute the sample proportion of patients who experienced flulike symptoms, which is \( \hat{p} = \frac{23}{858} \approx 0.0268 \) or \( 2.68\% \). This is greater than the competing drug's \( 2.3\% \), but we need to consider the significance level. A z-test for proportions can be useful here, allowing us to calculate the z-value and associated p-value to determine if we can reject the null hypothesis \( H_0: p \leq 0.023 \). Make sure to check that your sample size is large enough for statistical validity! The condition \( np_0(1-p_0) \) should be greater than 10 for normal approximation. Here it seems we're okay since \( 858 \times 0.023 \times (1-0.023) \approx 19.5 \). So, with all conditions met, you might just be discovering something interesting about this new drug!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad