Find the indefinite integral of \( f(x) = 6x^2 + 5x - 3 \) with respect to \( x \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the indefinite integral of \( f(x) = 6x^2 + 5x - 3 \) with respect to \( x \), we integrate each term separately: \[ \int f(x) \, dx = \int (6x^2) \, dx + \int (5x) \, dx - \int (3) \, dx \] Calculating each integral: 1. \( \int (6x^2) \, dx = 6 \cdot \frac{x^3}{3} = 2x^3 \) 2. \( \int (5x) \, dx = 5 \cdot \frac{x^2}{2} = \frac{5}{2}x^2 \) 3. \( \int (-3) \, dx = -3x \) Combining these results gives: \[ \int f(x) \, dx = 2x^3 + \frac{5}{2}x^2 - 3x + C \] where \( C \) is the constant of integration. So, the indefinite integral is: \[ \int (6x^2 + 5x - 3) \, dx = 2x^3 + \frac{5}{2}x^2 - 3x + C \]
