Pregunta
upstudy study bank question image url

aid of a diagram the value of (1) \[ 5 \cos \theta-3 \tan \theta \]

Ask by Donnelly Warren. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To evaluate \(5 \cos \theta - 3 \tan \theta\), rewrite it as \(\frac{5 \cos^2 \theta - 3 \sin \theta}{\cos \theta}\). For a specific \(\theta\), substitute the angle to find the value.

Solución

To evaluate the expression \(5 \cos \theta - 3 \tan \theta\), we can break it down into its components and analyze it step by step. 1. **Identify the trigonometric functions:** - \(\cos \theta\) is the cosine of angle \(\theta\). - \(\tan \theta\) is the tangent of angle \(\theta\), which can be expressed as \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). 2. **Substituting \(\tan \theta\):** We can rewrite the expression as: \[ 5 \cos \theta - 3 \frac{\sin \theta}{\cos \theta} \] 3. **Finding a common denominator:** To combine the terms, we can express the first term with a common denominator: \[ \frac{5 \cos^2 \theta - 3 \sin \theta}{\cos \theta} \] 4. **Final expression:** The expression can now be simplified to: \[ \frac{5 \cos^2 \theta - 3 \sin \theta}{\cos \theta} \] Now, if you want to evaluate this expression for a specific angle \(\theta\), please provide the value of \(\theta\). If you need a diagram to visualize the trigonometric functions, please specify that as well.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To visualize the expression \(5 \cos \theta - 3 \tan \theta\), imagine a right triangle defined in the unit circle. The adjacent side represents \(\cos \theta\) while the opposite side relates to \(\sin \theta\). The tangent can be defined as the ratio of the opposite to the adjacent side. So, if you plot the angle \(\theta\), the expression \(5 \cos \theta\) scales the adjacent side by 5 units, while \(- 3 \tan \theta\) contributes a downward adjustment based on the ratio of the opposite side to the adjacent side multiplied by -3. Together, you can visualize the transformation of the triangle as \(\theta\) varies! Now, to evaluate and understand various input angles, consider substituting common values like \(\theta = 0\), \(\frac{\pi}{4}\), and \(\frac{\pi}{2}\). For example, at \(\theta = 0\), \(5 \cos(0) - 3 \tan(0) = 5\). For \(\theta = \frac{\pi}{4}\), you'd find \(5\cdot\frac{\sqrt{2}}{2} - 3\cdot1\), which would require a calculator to find a numerical value. This exploration through angles allows you to see how the output changes dynamically with \(\theta\)!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad