Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solutions are \( x = -\frac{\sqrt{10} \times e^5}{10} \) and \( x = \frac{\sqrt{10} \times e^5}{10} \).
Solución
Solve the equation \( \ln(10)+\ln(x^{2})=10 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\ln{\left(10\right)}+\ln{\left(x^{2}\right)}=10\)
- step1: Find the domain:
\(\ln{\left(10\right)}+\ln{\left(x^{2}\right)}=10,x\neq 0\)
- step2: Transform the expression:
\(\ln{\left(10x^{2}\right)}=10\)
- step3: Convert the logarithm into exponential form:
\(10x^{2}=e^{10}\)
- step4: Divide both sides:
\(\frac{10x^{2}}{10}=\frac{e^{10}}{10}\)
- step5: Divide the numbers:
\(x^{2}=\frac{e^{10}}{10}\)
- step6: Simplify the expression:
\(x=\pm \sqrt{\frac{e^{10}}{10}}\)
- step7: Simplify:
\(x=\pm \frac{\sqrt{10}\times e^{5}}{10}\)
- step8: Separate into possible cases:
\(\begin{align}&x=\frac{\sqrt{10}\times e^{5}}{10}\\&x=-\frac{\sqrt{10}\times e^{5}}{10}\end{align}\)
- step9: Check if the solution is in the defined range:
\(\begin{align}&x=\frac{\sqrt{10}\times e^{5}}{10}\\&x=-\frac{\sqrt{10}\times e^{5}}{10}\end{align},x\neq 0\)
- step10: Find the intersection:
\(\begin{align}&x=\frac{\sqrt{10}\times e^{5}}{10}\\&x=-\frac{\sqrt{10}\times e^{5}}{10}\end{align}\)
- step11: Rewrite:
\(x_{1}=-\frac{\sqrt{10}\times e^{5}}{10},x_{2}=\frac{\sqrt{10}\times e^{5}}{10}\)
The solutions to the equation \( \ln 10 + \ln x^2 = 10 \) are \( x = -\frac{\sqrt{10} \times e^5}{10} \) and \( x = \frac{\sqrt{10} \times e^5}{10} \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To solve the equation \( \ln 10 + \ln x^{2} = 10 \), we can use the properties of logarithms. First, we combine the logarithms on the left side: \[ \ln(10x^{2}) = 10 \] Next, we exponentiate both sides to eliminate the natural logarithm: \[ 10x^{2} = e^{10} \] Now, divide both sides by 10: \[ x^{2} = \frac{e^{10}}{10} \] Finally, take the square root of both sides: \[ x = \pm \sqrt{\frac{e^{10}}{10}} = \pm \frac{e^{5}}{\sqrt{10}} \] Thus, the solutions for \( x \) are \( x = \frac{e^{5}}{\sqrt{10}} \) and \( x = -\frac{e^{5}}{\sqrt{10}} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium