Pregunta
Is the given binomial a factor of the given polynomial? if so, write the polynomial as a product of two factors. polynomial: \( P(x)=2 x^{3}+5 x^{2}-8 x-20 ; \) binomial: \( 2 x+5 \)
Ask by Gonzalez Rose. in the United States
Dec 23,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The binomial \( 2x + 5 \) is a factor of the polynomial \( P(x) = 2x^3 + 5x^2 - 8x - 20 \). The polynomial can be factored as:
\[ P(x) = (2x + 5)(x^2 - 4) \]
Solución
To determine if the given binomial is a factor of the given polynomial, we can use polynomial long division.
Given polynomial: \( P(x) = 2x^3 + 5x^2 - 8x - 20 \)
Given binomial: \( 2x + 5 \)
We will perform polynomial long division to divide the polynomial by the binomial and check if the remainder is zero. If the remainder is zero, then the binomial is a factor of the polynomial.
Let's perform the polynomial long division:
Divide the polynomials by following steps:
- step0: Using Long Division to Divide Polynomials:
\(\left(2x^{3}+5x^{2}-8x-20\right)\div \left(2x+5\right)\)
- step1: Calculate:
\(\left(x^{2}-4\right)\text{ }\textrm{remainder}\text{ }0\)
The result of the polynomial long division is \( (x^2 - 4) \) with a remainder of 0. This means that the binomial \( 2x + 5 \) is a factor of the polynomial \( P(x) = 2x^3 + 5x^2 - 8x - 20 \).
Therefore, the polynomial can be written as a product of two factors:
\[ P(x) = (2x + 5)(x^2 - 4) \]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To determine if the binomial \(2x + 5\) is a factor of the polynomial \(P(x) = 2x^3 + 5x^2 - 8x - 20\), we can use polynomial long division or synthetic division. Dividing \(P(x)\) by \(2x + 5\) results in a quotient of \(x^2 - 2\) with a remainder of 0, confirming that \(2x + 5\) is indeed a factor. Now, we can express \(P(x)\) as a product of the binomial and the quotient: \[ P(x) = (2x + 5)(x^2 - 2). \] The polynomial is factored successfully into two factors!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium