Pregunta
upstudy study bank question image url

Implicit differemation 5) \( \sqrt{x y}=\ln (x y) \)

Ask by Ruiz Gibson. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After implicit differentiation, the equation becomes: \[ \frac{y + x \frac{dy}{dx}}{2\sqrt{xy}} - \frac{y + x \frac{dy}{dx}}{xy} = 0 \] This simplifies to two possible solutions: 1. \( \frac{dy}{dx} = -\frac{y}{x} \) 2. \( xy = 4 \) So, the derivative \( \frac{dy}{dx} \) is either \( -\frac{y}{x} \) or the product \( xy \) equals 4.

Solución

We wish to differentiate   √(xy) = ln(xy) with respect to x, treating y as a function of x. Step 1. Write the equation in a clear form:   (1) √(xy) = ln(xy). Step 2. Differentiate both sides with respect to x. Notice that both sides involve the function u = xy. We have:  • The left‐hand side is √(xy) = [xy]^(1/2). By the chain rule,   d/dx { [xy]^(1/2) } = (1/(2√(xy))) · d/dx(xy).  • The right‐hand side is ln(xy). Again by the chain rule,   d/dx { ln(xy) } = (1/(xy)) · d/dx(xy). Step 3. Now compute d/dx(xy). Since x and y are both functions of x (with y = y(x)), use the product rule:   d/dx(xy) = y + x·y′. Step 4. Substitute these derivatives back into the original differentiations. Thus, the derivative of the left‐hand side is:   (1/(2√(xy)))(y + x y′), and the derivative of the right‐hand side is:   (1/(xy))(y + x y′). So our differentiated equation becomes:   (1/(2√(xy)))(y + x y′) = (1/(xy))(y + x y′). Step 5. Factor Out the Common Term Notice that (y + x y′) appears on both sides. Therefore we can write:   (y + x y′) · [1/(2√(xy)) – 1/(xy)] = 0. For a product to be zero, at least one of the factors must vanish. This gives us two cases: Case 1. Suppose   y + x y′ = 0. Then,   y′ = – y/x. Case 2. Suppose instead that   1/(2√(xy)) – 1/(xy) = 0. Solve for xy:   1/(2√(xy)) = 1/(xy). Multiply both sides by 2√(xy)·(xy) (assuming xy > 0 so that neither denominator is zero) to clear fractions:   xy = 2√(xy). Now, let u = √(xy) so that u^2 = xy. Then the equation becomes:   u^2 = 2u. This simplifies to:   u(u – 2) = 0. Since u = √(xy) must be positive (note that ln(xy) is only defined when xy > 0), we have u ≠ 0. Therefore, u – 2 = 0, or u = 2. Returning to the original variables:   √(xy) = 2 ⟹ xy = 4. Thus, if xy = 4 then the factor 1/(2√(xy)) – 1/(xy) vanishes. In this situation, the differentiated equation is automatically satisfied for any value of y′. In other words, no additional information about y′ is obtained when xy = 4. Summary of the Answer: The result of implicit differentiation is:   (1/(2√(xy)) – 1/(xy)) · (y + x y′) = 0. Thus, either:   y + x y′ = 0 ⟹ y′ = – y/x, or   xy = 4. Either answer (or an explanation that includes the two cases) is acceptable.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Implicit differentiation is a powerful tool when you're dealing with equations involving multiple variables that are not easily solved for one variable in terms of the other. In the case of \( \sqrt{xy} = \ln(xy) \), you would differentiate both sides with respect to \( x \). Remember to apply the product rule for the \( y \) terms, treating \( y \) as an implicit function of \( x \), and the chain rule for the logarithm. One common mistake is forgetting to multiply by \( \frac{dy}{dx} \) when differentiating terms involving \( y \). For instance, when differentiating \( xy \), you need to use the product rule which means, \( x \frac{dy}{dx} + y \) rather than just \( y \). Keeping track of these rules will keep your implicit differentiation game strong!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad