Pregunta
upstudy study bank question image url

The differential equation
has an implicit general solution of the form , where is an arbitrary constant.
In fact, because the differential equation is separable, we can define the solution curve implicitly by a function in the form
Find such a solution and then give the related functions requested.

Ask by Wheeler Cook. in the United States
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solución

We start with the differential equation
Since the equation is separable, we first write it in the form

Step 1. Factor and Decompose

Notice that the quadratic factors as
We then have
We now express the left-hand side as a sum of partial fractions. Assume
Multiplying both sides by gives
Expanding the right side:
Thus, equating coefficients we have:
Solve for and :
  • From , we get .
  • Substitute into :
  • Then .
Thus, we have:

Step 2. Integrate Both Sides

The separated equation is now:
Integrate both sides:
Compute the integrals:
  • For the -side: So the left-hand side becomes:
  • For the -side:
Thus, we have:
where is an arbitrary constant.

Step 3. Write the Final Answer in the Requested Form

We wish to express the solution as
where is a constant. We can rearrange the integrated equation to obtain:
where (since is an arbitrary constant, so is ).
Thus, we define:
and so the implicit solution is:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the differential equation
we can separate variables by bringing all terms to one side and terms to the other. Rearranging gives us:
Now we need to identify the functions and such that their total .
For :
where is a constant added during the integration of .
For :
We first perform the integration of the left side, which involves partial fraction decomposition. We can rewrite the rational expression:
Finding coefficients A and B, we substitute and solve, leading to:
Combining everything, we have:

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad