Pregunta
upstudy study bank question image url

6.1.2 Exam: Semester 2 Exam Question 14 of 40 Prakash bought a new car at the dealership for \( \$ 27,000 \). It is estimated that the value of the car will decrease \( 7 \% \) each year. Which exponential function models the value \( v \) of the car after \( t \) years? A. \( v=27,000(0.3)^{t} \) B. \( v=27,000(1.3)^{t} \) c. \( v=27,000(1.03)^{t} \) D. \( v=27,000(0.93)^{t} \)

Ask by Cervantes Ramirez. in the United States
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct exponential function is \( v = 27,000(0.93)^t \).

Solución

To model the depreciation of Prakash's new car, we use an exponential decay function. Here's how to determine the correct function: 1. **Initial Value (\( v_0 \))**: The car's initial value is \$27,000. 2. **Depreciation Rate**: The car loses 7% of its value each year. This means it retains \( 100\% - 7\% = 93\% \) of its value annually. 3. **Exponential Decay Formula**: The general formula for exponential decay is: \[ v = v_0 \times (1 - r)^t \] where: - \( v \) is the value after \( t \) years, - \( v_0 \) is the initial value, - \( r \) is the depreciation rate. Applying the values: \[ v = 27,000 \times (0.93)^t \] **Option D** correctly represents this formula: \[ \boxed{D.\ v=27,000(0.93)^{t}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When a car depreciates in value by a percentage each year, we can model it using an exponential decay function. Since the value decreases by 7%, the remaining value after depreciation each year is \( 100\% - 7\% = 93\% \) or \( 0.93 \). Thus, the correct exponential function is \( v = 27,000(0.93)^{t} \), which corresponds to option D. This kind of modeling is important in finance as it helps buyers understand how their assets will lose value over time. Having a grasp on depreciation can inform decisions on buying, selling, or trading in vehicles, ensuring you make the best financial choice possible with your hard-earned money.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad