6.1.2 Exam: Semester 2 Exam Question 13 of 40 What is the reference angle for \( 312^{\circ} \) ? \[ \begin{array}{l}\text { A. } 42^{\circ} \\ \text { B. } 48^{\circ} \\ \text { C. } 32^{\circ} \\ \text { D. } 58^{\circ}\end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the reference angle for \( 312^{\circ} \), first determine how far \( 312^{\circ} \) is from \( 360^{\circ} \). Subtract \( 312^{\circ} \) from \( 360^{\circ} \): \[ 360^{\circ} - 312^{\circ} = 48^{\circ} \] Therefore, the reference angle is \( 48^{\circ} \), which corresponds to option B! In your math journey, it's essential to grasp the concept of reference angles, especially when dealing with trigonometric functions. These angles help simplify calculations across different quadrants. Remember, the reference angle is always the positive acute angle formed between the terminal side of the given angle and the x-axis—just like a trusty compass leading you back home!
