Write the augmented matrix of the system and use the matrix method to solve the system. \( \begin{array}{l}-x+4 y+3 z=-16 \\ 3 x+y+z=10 \\ x+y+z=0\end{array} \) Select the correct choice and, if necessary, fill in the answer boxes to complete your choice. A. This system has exactly one solution. The solution is ( (Type integers or decimals.) B. This system has infinitely many solutions of the form ( \( \square, \square, z) \), where \( z \) is any real number. (Type integers or decimals.) C. This system has no solution.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To start, the augmented matrix for the given system of equations is: \[ \begin{pmatrix} -1 & 4 & 3 & | & -16 \\ 3 & 1 & 1 & | & 10 \\ 1 & 1 & 1 & | & 0 \end{pmatrix} \] Now, using the matrix method (specifically, row reduction), we can solve this matrix. The goal is to apply Gaussian elimination to bring the matrix to row-echelon form. 1. Start by swapping the first row with the third row to get a leading 1: \[ \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 3 & 1 & 1 & | & 10 \\ -1 & 4 & 3 & | & -16 \end{pmatrix} \] 2. Now, eliminate the x terms in the second and third rows. For the second row, we perform the operation \( R_2 - 3R_1 \): \[ \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & -2 & -2 & | & 10 \\ -1 & 4 & 3 & | & -16 \end{pmatrix} \] For the third row, we perform \( R_3 + R_1 \): \[ \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & -2 & -2 & | & 10 \\ 0 & 5 & 4 & | & -16 \end{pmatrix} \] 3. Next, we can simplify the second row by multiplying it by \(-\frac{1}{2}\): \[ \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 1 & 1 & | & -5 \\ 0 & 5 & 4 & | & -16 \end{pmatrix} \] 4. Now eliminate \( y \) from the third row by performing \( R_3 - 5R_2 \): \[ \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 1 & 1 & | & -5 \\ 0 & 0 & -1 & | & 9 \end{pmatrix} \] 5. Finally, multiply the third row by \(-1\): \[ \begin{pmatrix} 1 & 1 & 1 & | & 0 \\ 0 & 1 & 1 & | & -5 \\ 0 & 0 & 1 & | & -9 \end{pmatrix} \] Now back substitute to find the values: From Row 3: \( z = -9 \) From Row 2: \( y + z = -5 \) → \( y - 9 = -5 \) → \( y = 4 \) From Row 1: \( x + y + z = 0 \) → \( x + 4 - 9 = 0 \) → \( x = 5 \) Thus, the solution to the system is \( (5, 4, -9) \). The correct choice is A. This system has exactly one solution. The solution is (5, 4, -9).
