Pregunta
upstudy study bank question image url

The breaking strength of a certain kind of mild steel in tension is 389 MPa . A tie-bar of angle steel supports an axial pull of \( 167,7 \mathrm{kN} \). Find suitable dimensions if the mean thickness of metal is \( 12,7 \mathrm{~mm} \). The factor of safety is 6 .

Ask by Beck Frank. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To support an axial pull of 167.7 kN with a factor of safety of 6, the tie-bar should have a base width of approximately 50 mm, a height of about 116.4 mm, and a mean thickness of 12.7 mm.

Solución

To find suitable dimensions for the tie-bar of angle steel, we can follow these steps: 1. **Extract Known Conditions:** - Breaking strength of mild steel, \( \sigma_b = 389 \, \text{MPa} \) - Axial pull, \( P = 167.7 \, \text{kN} = 167700 \, \text{N} \) - Mean thickness of metal, \( t = 12.7 \, \text{mm} = 0.0127 \, \text{m} \) - Factor of safety, \( n = 6 \) 2. **Calculate Allowable Stress:** The allowable stress \( \sigma_a \) can be calculated using the breaking strength and the factor of safety: \[ \sigma_a = \frac{\sigma_b}{n} \] 3. **Calculate Required Cross-Sectional Area:** The required cross-sectional area \( A \) can be calculated using the formula: \[ A = \frac{P}{\sigma_a} \] 4. **Determine Dimensions:** For an angle steel section, we can assume a standard shape and calculate the dimensions based on the required area and the mean thickness. Let's perform the calculations step by step. ### Step 1: Calculate Allowable Stress \[ \sigma_a = \frac{389 \, \text{MPa}}{6} \] ### Step 2: Calculate Required Cross-Sectional Area \[ A = \frac{167700 \, \text{N}}{\sigma_a} \] Now, let's calculate these values. Calculate the value by following steps: - step0: Calculate: \(\frac{389}{6}\) Calculate or simplify the expression \( 167700/(389/6) \). Calculate the value by following steps: - step0: Calculate: \(\frac{167700}{\frac{389}{6}}\) - step1: Multiply by the reciprocal: \(167700\times \frac{6}{389}\) - step2: Multiply: \(\frac{167700\times 6}{389}\) - step3: Multiply: \(\frac{1006200}{389}\) ### Step 1: Calculate Allowable Stress The allowable stress \( \sigma_a \) is calculated as follows: \[ \sigma_a = \frac{389 \, \text{MPa}}{6} \approx 64.83 \, \text{MPa} \] ### Step 2: Calculate Required Cross-Sectional Area Now, we can calculate the required cross-sectional area \( A \): \[ A = \frac{167700 \, \text{N}}{64.83 \, \text{MPa}} \approx 2586.63 \, \text{mm}^2 \] ### Step 3: Determine Dimensions For an angle steel section, the cross-sectional area can be approximated based on the dimensions of the angle. The area \( A \) of an angle section can be calculated using the formula: \[ A = 2 \left( b \cdot t + \frac{(h - t) \cdot t}{2} \right) \] where: - \( b \) is the base width, - \( h \) is the height of the angle, - \( t \) is the thickness. Assuming a standard angle section, we can rearrange the formula to find suitable dimensions \( b \) and \( h \) that satisfy the area requirement of \( 2586.63 \, \text{mm}^2 \). Let's assume a base width \( b \) and calculate the height \( h \) based on the required area. We can set \( b = 50 \, \text{mm} \) as a starting point and solve for \( h \). The equation becomes: \[ 2586.63 = 2 \left( 50 \cdot 12.7 + \frac{(h - 12.7) \cdot 12.7}{2} \right) \] Now, let's solve for \( h \). Solve the equation by following steps: - step0: Solve for \(h\): \(2586.63=2\left(50\times 12.7+\frac{\left(h-12.7\right)\times 12.7}{2}\right)\) - step1: Simplify: \(2586.63=\frac{110871}{100}+\frac{127}{10}h\) - step2: Swap the sides: \(\frac{110871}{100}+\frac{127}{10}h=2586.63\) - step3: Move the constant to the right side: \(\frac{127}{10}h=2586.63-\frac{110871}{100}\) - step4: Subtract the numbers: \(\frac{127}{10}h=\frac{36948}{25}\) - step5: Multiply by the reciprocal: \(\frac{127}{10}h\times \frac{10}{127}=\frac{36948}{25}\times \frac{10}{127}\) - step6: Multiply: \(h=\frac{73896}{635}\) Calculate or simplify the expression \( 73896/635 \). Calculate the value by following steps: - step0: Calculate: \(\frac{73896}{635}\) ### Step 3: Solve for Height \( h \) From the equation, we found: \[ h = \frac{73896}{635} \approx 116.37 \, \text{mm} \] ### Summary of Dimensions Based on our calculations, we can propose the following dimensions for the angle steel tie-bar: - Base width \( b \approx 50 \, \text{mm} \) - Height \( h \approx 116.37 \, \text{mm} \) - Mean thickness \( t = 12.7 \, \text{mm} \) These dimensions should provide a suitable cross-sectional area to safely support the axial pull of \( 167.7 \, \text{kN} \) with a factor of safety of 6.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To ensure the tie-bar can safely handle the axial pull, we first need to determine the allowable stress using the given factor of safety. The allowable stress is calculated by dividing the breaking strength by the factor of safety: \[ \text{Allowable stress} = \frac{\text{Breaking Strength}}{\text{Factor of Safety}} = \frac{389 \, \text{MPa}}{6} = 64.83 \, \text{MPa} \] Next, we convert the axial pull to the same units: \[ 167.7 \, \text{kN} = 167700 \, \text{N} \] Now, using this allowable stress, we can find the required cross-sectional area (A) of the tie-bar to ensure it can support the load: \[ A = \frac{F}{\sigma_{\text{allowable}}} = \frac{167700 \, \text{N}}{64.83 \, \text{MPa}} \approx 2583.49 \, \text{mm}^2 \] Given that the mean thickness of the angle steel is 12.7 mm, we can denote the width of the angle as \( b \). For an angle section of thickness \( t \), the area of the cross-section can be approximated assuming equal legs: \[ A = 2(b \cdot t) - t^2 \] Substituting \( t = 12.7 \, \text{mm} \): \[ 2583.49 \, \text{mm}^2 = 2(b \cdot 12.7) - (12.7^2) \] This gives: \[ 2583.49 = 25.4b - 161.29 \] \[ 25.4b = 2583.49 + 161.29 = 2744.78 \] Thus, \[ b = \frac{2744.78}{25.4} \approx 108.63 \, \text{mm} \] So, suitable dimensions for the angles can be approximately 12.7 mm in thickness and 108.63 mm in width.

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad