Responder
1. \( \frac{3(x-1)}{x-5} \div \frac{2(1-x)}{5-x} = \frac{3}{2} \)
2. \( \frac{x}{x-1}-\frac{12}{x^{2}-1}-\frac{6}{x+1} = \frac{x-6}{x-1} \)
3. \( \frac{x}{x+2}-\frac{2}{x-1}-\frac{6}{x^{2}} = \frac{x^{4}-3x^{3}-10x^{2}-6x+12}{x^{4}+x^{3}-2x^{2}} \)
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{x}{\left(x-1\right)}\right)-\left(\frac{12}{\left(x^{2}-1\right)}\right)-\left(\frac{6}{\left(x+1\right)}\right)\)
- step1: Remove the parentheses:
\(\left(\frac{x}{x-1}\right)-\left(\frac{12}{x^{2}-1}\right)-\left(\frac{6}{x+1}\right)\)
- step2: Remove the parentheses:
\(\frac{x}{x-1}-\left(\frac{12}{x^{2}-1}\right)-\left(\frac{6}{x+1}\right)\)
- step3: Remove the parentheses:
\(\frac{x}{x-1}-\frac{12}{x^{2}-1}-\left(\frac{6}{x+1}\right)\)
- step4: Remove the parentheses:
\(\frac{x}{x-1}-\frac{12}{x^{2}-1}-\frac{6}{x+1}\)
- step5: Factor the expression:
\(\frac{x}{x-1}-\frac{12}{\left(x+1\right)\left(x-1\right)}-\frac{6}{x+1}\)
- step6: Reduce fractions to a common denominator:
\(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{12}{\left(x+1\right)\left(x-1\right)}-\frac{6\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
- step7: Rewrite the expression:
\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{12}{\left(x+1\right)\left(x-1\right)}-\frac{6\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
- step8: Transform the expression:
\(\frac{x\left(x+1\right)-12-6\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
- step9: Multiply the terms:
\(\frac{x^{2}+x-12-6\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
- step10: Multiply the terms:
\(\frac{x^{2}+x-12-\left(6x-6\right)}{\left(x+1\right)\left(x-1\right)}\)
- step11: Calculate:
\(\frac{x^{2}-5x-6}{\left(x+1\right)\left(x-1\right)}\)
- step12: Factor the expression:
\(\frac{\left(x+1\right)\left(x-6\right)}{\left(x+1\right)\left(x-1\right)}\)
- step13: Reduce the fraction:
\(\frac{x-6}{x-1}\)
Calculate or simplify the expression \( (3*(x-1)/(x-5)) / (2*(1-x)/(5-x)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(\frac{3\left(x-1\right)}{\left(x-5\right)}\right)}{\left(\frac{2\left(1-x\right)}{\left(5-x\right)}\right)}\)
- step1: Remove the parentheses:
\(\frac{\frac{3\left(x-1\right)}{x-5}}{\frac{2\left(1-x\right)}{5-x}}\)
- step2: Multiply by the reciprocal:
\(\frac{3\left(x-1\right)}{x-5}\times \frac{5-x}{2\left(1-x\right)}\)
- step3: Rewrite the expression:
\(\frac{3\left(x-1\right)}{x-5}\times \frac{-x+5}{2\left(-x+1\right)}\)
- step4: Multiply the terms:
\(\frac{3\left(x-1\right)\left(-x+5\right)}{\left(x-5\right)\times 2\left(-x+1\right)}\)
- step5: Multiply the terms:
\(\frac{3\left(x-1\right)\left(-x+5\right)}{2\left(x-5\right)\left(-x+1\right)}\)
- step6: Calculate:
\(\frac{-3x^{2}+18x-15}{-2x^{2}+12x-10}\)
- step7: Calculate:
\(\frac{-3\left(x^{2}-6x+5\right)}{-2\left(x^{2}-6x+5\right)}\)
- step8: Reduce the fraction:
\(\frac{3}{2}\)
Calculate or simplify the expression \( (x/(x+2)) - (2/(x-1)) - (6/(x^2)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(\frac{x}{\left(x+2\right)}\right)-\left(\frac{2}{\left(x-1\right)}\right)-\frac{6}{x^{2}}\)
- step1: Remove the parentheses:
\(\left(\frac{x}{x+2}\right)-\left(\frac{2}{x-1}\right)-\frac{6}{x^{2}}\)
- step2: Remove the parentheses:
\(\frac{x}{x+2}-\left(\frac{2}{x-1}\right)-\frac{6}{x^{2}}\)
- step3: Remove the parentheses:
\(\frac{x}{x+2}-\frac{2}{x-1}-\frac{6}{x^{2}}\)
- step4: Reduce fractions to a common denominator:
\(\frac{x\left(x-1\right)x^{2}}{\left(x+2\right)\left(x-1\right)x^{2}}-\frac{2\left(x+2\right)x^{2}}{\left(x-1\right)\left(x+2\right)x^{2}}-\frac{6\left(x+2\right)\left(x-1\right)}{x^{2}\left(x+2\right)\left(x-1\right)}\)
- step5: Rewrite the expression:
\(\frac{x\left(x-1\right)x^{2}}{\left(x+2\right)\left(x-1\right)x^{2}}-\frac{2\left(x+2\right)x^{2}}{\left(x+2\right)\left(x-1\right)x^{2}}-\frac{6\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)x^{2}}\)
- step6: Transform the expression:
\(\frac{x\left(x-1\right)x^{2}-2\left(x+2\right)x^{2}-6\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)x^{2}}\)
- step7: Multiply the terms:
\(\frac{x^{4}-x^{3}-2\left(x+2\right)x^{2}-6\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)x^{2}}\)
- step8: Multiply the terms:
\(\frac{x^{4}-x^{3}-\left(2x^{3}+4x^{2}\right)-6\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)x^{2}}\)
- step9: Multiply the terms:
\(\frac{x^{4}-x^{3}-\left(2x^{3}+4x^{2}\right)-\left(6x^{2}+6x-12\right)}{\left(x+2\right)\left(x-1\right)x^{2}}\)
- step10: Subtract the terms:
\(\frac{x^{4}-3x^{3}-10x^{2}-6x+12}{\left(x+2\right)\left(x-1\right)x^{2}}\)
- step11: Calculate:
\(\frac{x^{4}-3x^{3}-10x^{2}-6x+12}{x^{4}+x^{3}-2x^{2}}\)
Here are the simplified results for each expression:
1. For the expression \( \frac{3(x-1)}{x-5} \div \frac{2(1-x)}{5-x} \):
- The simplified result is \( \frac{3}{2} \).
2. For the expression \( \frac{x}{x-1}-\frac{12}{x^{2}-1}-\frac{6}{x+1} \):
- The simplified result is \( \frac{x-6}{x-1} \).
3. For the expression \( \frac{x}{x+2}-\frac{2}{x-1}-\frac{6}{x^{2}} \):
- The simplified result is \( \frac{x^{4}-3x^{3}-10x^{2}-6x+12}{x^{4}+x^{3}-2x^{2}} \).
If you need further assistance or explanations for any of these steps, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución