Pregunta
upstudy study bank question image url

Practice: Simplify 1. \( \frac{3(x-1)}{x-5} \div \frac{2(1-x)}{5-x} \) 3. \( \frac{x}{x-1}-\frac{12}{x^{2}-1}-\frac{6}{x+1} \) 4. \( \frac{x}{x+2}-\frac{2}{x-1}-\frac{6}{x^{2}} \)

Ask by Reese Clark. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. \( \frac{3(x-1)}{x-5} \div \frac{2(1-x)}{5-x} = \frac{3}{2} \) 2. \( \frac{x}{x-1}-\frac{12}{x^{2}-1}-\frac{6}{x+1} = \frac{x-6}{x-1} \) 3. \( \frac{x}{x+2}-\frac{2}{x-1}-\frac{6}{x^{2}} = \frac{x^{4}-3x^{3}-10x^{2}-6x+12}{x^{4}+x^{3}-2x^{2}} \)

Solución

Simplify the expression by following steps: - step0: Solution: \(\left(\frac{x}{\left(x-1\right)}\right)-\left(\frac{12}{\left(x^{2}-1\right)}\right)-\left(\frac{6}{\left(x+1\right)}\right)\) - step1: Remove the parentheses: \(\left(\frac{x}{x-1}\right)-\left(\frac{12}{x^{2}-1}\right)-\left(\frac{6}{x+1}\right)\) - step2: Remove the parentheses: \(\frac{x}{x-1}-\left(\frac{12}{x^{2}-1}\right)-\left(\frac{6}{x+1}\right)\) - step3: Remove the parentheses: \(\frac{x}{x-1}-\frac{12}{x^{2}-1}-\left(\frac{6}{x+1}\right)\) - step4: Remove the parentheses: \(\frac{x}{x-1}-\frac{12}{x^{2}-1}-\frac{6}{x+1}\) - step5: Factor the expression: \(\frac{x}{x-1}-\frac{12}{\left(x+1\right)\left(x-1\right)}-\frac{6}{x+1}\) - step6: Reduce fractions to a common denominator: \(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{12}{\left(x+1\right)\left(x-1\right)}-\frac{6\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\) - step7: Rewrite the expression: \(\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{12}{\left(x+1\right)\left(x-1\right)}-\frac{6\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\) - step8: Transform the expression: \(\frac{x\left(x+1\right)-12-6\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\) - step9: Multiply the terms: \(\frac{x^{2}+x-12-6\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\) - step10: Multiply the terms: \(\frac{x^{2}+x-12-\left(6x-6\right)}{\left(x+1\right)\left(x-1\right)}\) - step11: Calculate: \(\frac{x^{2}-5x-6}{\left(x+1\right)\left(x-1\right)}\) - step12: Factor the expression: \(\frac{\left(x+1\right)\left(x-6\right)}{\left(x+1\right)\left(x-1\right)}\) - step13: Reduce the fraction: \(\frac{x-6}{x-1}\) Calculate or simplify the expression \( (3*(x-1)/(x-5)) / (2*(1-x)/(5-x)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(\frac{3\left(x-1\right)}{\left(x-5\right)}\right)}{\left(\frac{2\left(1-x\right)}{\left(5-x\right)}\right)}\) - step1: Remove the parentheses: \(\frac{\frac{3\left(x-1\right)}{x-5}}{\frac{2\left(1-x\right)}{5-x}}\) - step2: Multiply by the reciprocal: \(\frac{3\left(x-1\right)}{x-5}\times \frac{5-x}{2\left(1-x\right)}\) - step3: Rewrite the expression: \(\frac{3\left(x-1\right)}{x-5}\times \frac{-x+5}{2\left(-x+1\right)}\) - step4: Multiply the terms: \(\frac{3\left(x-1\right)\left(-x+5\right)}{\left(x-5\right)\times 2\left(-x+1\right)}\) - step5: Multiply the terms: \(\frac{3\left(x-1\right)\left(-x+5\right)}{2\left(x-5\right)\left(-x+1\right)}\) - step6: Calculate: \(\frac{-3x^{2}+18x-15}{-2x^{2}+12x-10}\) - step7: Calculate: \(\frac{-3\left(x^{2}-6x+5\right)}{-2\left(x^{2}-6x+5\right)}\) - step8: Reduce the fraction: \(\frac{3}{2}\) Calculate or simplify the expression \( (x/(x+2)) - (2/(x-1)) - (6/(x^2)) \). Simplify the expression by following steps: - step0: Solution: \(\left(\frac{x}{\left(x+2\right)}\right)-\left(\frac{2}{\left(x-1\right)}\right)-\frac{6}{x^{2}}\) - step1: Remove the parentheses: \(\left(\frac{x}{x+2}\right)-\left(\frac{2}{x-1}\right)-\frac{6}{x^{2}}\) - step2: Remove the parentheses: \(\frac{x}{x+2}-\left(\frac{2}{x-1}\right)-\frac{6}{x^{2}}\) - step3: Remove the parentheses: \(\frac{x}{x+2}-\frac{2}{x-1}-\frac{6}{x^{2}}\) - step4: Reduce fractions to a common denominator: \(\frac{x\left(x-1\right)x^{2}}{\left(x+2\right)\left(x-1\right)x^{2}}-\frac{2\left(x+2\right)x^{2}}{\left(x-1\right)\left(x+2\right)x^{2}}-\frac{6\left(x+2\right)\left(x-1\right)}{x^{2}\left(x+2\right)\left(x-1\right)}\) - step5: Rewrite the expression: \(\frac{x\left(x-1\right)x^{2}}{\left(x+2\right)\left(x-1\right)x^{2}}-\frac{2\left(x+2\right)x^{2}}{\left(x+2\right)\left(x-1\right)x^{2}}-\frac{6\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)x^{2}}\) - step6: Transform the expression: \(\frac{x\left(x-1\right)x^{2}-2\left(x+2\right)x^{2}-6\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)x^{2}}\) - step7: Multiply the terms: \(\frac{x^{4}-x^{3}-2\left(x+2\right)x^{2}-6\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)x^{2}}\) - step8: Multiply the terms: \(\frac{x^{4}-x^{3}-\left(2x^{3}+4x^{2}\right)-6\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)x^{2}}\) - step9: Multiply the terms: \(\frac{x^{4}-x^{3}-\left(2x^{3}+4x^{2}\right)-\left(6x^{2}+6x-12\right)}{\left(x+2\right)\left(x-1\right)x^{2}}\) - step10: Subtract the terms: \(\frac{x^{4}-3x^{3}-10x^{2}-6x+12}{\left(x+2\right)\left(x-1\right)x^{2}}\) - step11: Calculate: \(\frac{x^{4}-3x^{3}-10x^{2}-6x+12}{x^{4}+x^{3}-2x^{2}}\) Here are the simplified results for each expression: 1. For the expression \( \frac{3(x-1)}{x-5} \div \frac{2(1-x)}{5-x} \): - The simplified result is \( \frac{3}{2} \). 2. For the expression \( \frac{x}{x-1}-\frac{12}{x^{2}-1}-\frac{6}{x+1} \): - The simplified result is \( \frac{x-6}{x-1} \). 3. For the expression \( \frac{x}{x+2}-\frac{2}{x-1}-\frac{6}{x^{2}} \): - The simplified result is \( \frac{x^{4}-3x^{3}-10x^{2}-6x+12}{x^{4}+x^{3}-2x^{2}} \). If you need further assistance or explanations for any of these steps, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's dive into the simplifications! 1. To simplify \( \frac{3(x-1)}{x-5} \div \frac{2(1-x)}{5-x} \), we first note that \( 1 - x = -(x - 1) \) and \( 5 - x = -(x - 5) \). Therefore, we can rewrite the expression as: \[ \frac{3(x-1)}{x-5} \cdot \frac{-(5-x)}{2(1-x)} = \frac{3(x-1)}{x-5} \cdot \frac{-(x-5)}{2(-(x-1))} = \frac{3}{-2} = -\frac{3}{2} \] 3. For \( \frac{x}{x-1}-\frac{12}{x^{2}-1}-\frac{6}{x+1} \), notice that \( x^2 - 1 = (x-1)(x+1) \). The common denominator is \( (x-1)(x+1) \): \[ = \frac{x(x+1) - 12 - 6(x-1)}{(x-1)(x+1)} = \frac{x^2 + x - 12 - 6x + 6}{(x-1)(x+1)} = \frac{x^2 - 5x - 6}{(x-1)(x+1)} \] Factor the numerator: \[ = \frac{(x-6)(x+1)}{(x-1)(x+1)} = \frac{x-6}{x-1}, \, (x+1 \neq 0) \] 4. Now, simplify \( \frac{x}{x+2}-\frac{2}{x-1}-\frac{6}{x^{2}} \): The common denominator is \( (x + 2)(x - 1)(x^2) \): \[ = \frac{x^2(x-1) - 2(x+2)x^2 - 6(x-1)(x+2)}{(x+2)(x-1)(x^2)} \] After distributing and simplifying the numerator, combine like terms, factor where possible, and arrive at the final simplified expression. Feel free to explore any of these steps in more detail if you want to master simplification!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad