h) \( 16 c^{5} d^{2} h^{3} \div 24 c^{5} d^{9} h^{4} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To simplify the expression \( 16 c^{5} d^{2} h^{3} \div 24 c^{5} d^{9} h^{4} \), you start by dividing the coefficients and simplifying the variables separately. The coefficients give us \( \frac{16}{24} = \frac{2}{3} \). For the variables, since \( c^{5} \div c^{5} = 1 \), it cancels out. For \( d^{2} \div d^{9} = d^{2-9} = d^{-7} \), which can also be expressed as \( \frac{1}{d^{7}} \). Finally, for \( h^{3} \div h^{4} = h^{3-4} = h^{-1} \) or \( \frac{1}{h} \). Putting all this together, we get: \[ \frac{2}{3} \frac{1}{d^{7}} \frac{1}{h} = \frac{2}{3 d^{7} h} \] So, the simplified form is \( \frac{2}{3 d^{7} h} \).
