Given the function: \[ f(x)=\frac{\sqrt{7+9 x^{3}}}{1-2 x} \] evaluate the following limits: (a) \( \lim _{x \rightarrow-\infty} f(x) \) (b) \( \lim _{x \rightarrow \infty} f(x) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To solve the limits of the given function \( f(x) = \frac{\sqrt{7 + 9x^3}}{1 - 2x} \), let's analyze each limit separately. (a) For \( \lim_{x \rightarrow -\infty} f(x) \): As \( x \) approaches \(-\infty\), the dominant term in the square root is \( 9x^3 \), so we can approximate the function as: \[ f(x) \approx \frac{\sqrt{9x^3}}{1 - 2x} = \frac{\sqrt{9} \sqrt{x^3}}{1 - 2x} = \frac{3\sqrt{x^3}}{1 - 2x} \] Since \( \sqrt{x^3} = x^{3/2} \sqrt{-1} = i |x|^{3/2} \) for \( x < 0 \), our focus is on the magnitudes: \[ \sqrt{x^3} = i (-x)^{3/2} \] So as \( x \) goes to \(-\infty\), \( \frac{3(-x)^{3/2}}{1 + 2|x|} \) behaves like: \[ f(x) \approx \frac{3(-x)^{3/2}}{2|x|} = \frac{3(-x)^{3/2}}{2(-x)} = \frac{3(-x)^{1/2}}{2} \] As \( x \to -\infty \), \( (-x)^{1/2} \to \infty \). Thus, \[ \lim_{x \rightarrow -\infty} f(x) = -\infty. \] (b) For \( \lim_{x \rightarrow \infty} f(x) \): As \( x \to \infty\), again the dominant term under the square root is \( 9x^3 \): \[ f(x) \approx \frac{\sqrt{9x^3}}{1 - 2x} = \frac{3\sqrt{x^3}}{1 - 2x} \] Here, \[ \sqrt{x^3} = x^{3/2}, \] Thus, we can approximate \( f(x) \) as: \[ f(x) \approx \frac{3x^{3/2}}{1 - 2x}. \] For large \( x \), \( 1 - 2x \) is dominated by \(-2x\): \[ f(x) \approx \frac{3x^{3/2}}{-2x} = \frac{-3}{2} x^{1/2} . \] As \( x \to \infty\), \( x^{1/2} \to \infty \), so: \[ \lim_{x \rightarrow \infty} f(x) = -\infty. \] In summary, the limits are: - (a) \( \lim_{x \rightarrow -\infty} f(x) = -\infty \) - (b) \( \lim_{x \rightarrow \infty} f(x) = -\infty \)
preguntas relacionadas
