Pregunta
upstudy study bank question image url

Given the function: \[ f(x)=\frac{\sqrt{7+9 x^{3}}}{1-2 x} \] evaluate the following limits: (a) \( \lim _{x \rightarrow-\infty} f(x) \) (b) \( \lim _{x \rightarrow \infty} f(x) \)

Ask by Warren Powers. in Ghana
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The limit as \( x \) approaches negative infinity does not exist because the function is only defined for \( x \geq -0.92 \). (b) The limit as \( x \) approaches positive infinity is negative infinity. Summary: - (a) Limit does not exist. - (b) Limit is \( -\infty \).

Solución

We begin with the function   f(x) = (√(7 + 9x³)) / (1 – 2x). Before evaluating the limits, note that for f(x) to be a real–valued function the radicand must be nonnegative:   7 + 9x³ ≥ 0 ⟹ x³ ≥ –7/9 ⟹ x ≥ ∛(–7/9). Thus, the domain of f is x ≥ ∛(–7/9) (approximately x ≥ –0.92). With this in mind, let’s address the two parts. ────────────────────────────── (a) Limit as x → –∞ Since the domain of f is limited to x values greater than or equal to ∛(–7/9), there is no “real” value of x less than ∛(–7/9); in other words, the function is not defined (in the real numbers) for x near –∞. Hence, one cannot take the limit as x → –∞ in the usual real–analysis sense. Answer for (a): The limit as x → –∞ does not exist in the real numbers (since f(x) is only defined for x ≥ ∛(–7/9)). ────────────────────────────── (b) Limit as x → +∞ For large positive x, we can analyze the behavior of the numerator and denominator separately. 1. The numerator is √(7 + 9x³). As x → +∞, the term 9x³ dominates the constant 7. Thus,   7 + 9x³ ~ 9x³,  and therefore,   √(7 + 9x³) ~ √(9x³) = 3x^(3/2). 2. The denominator is 1 – 2x, and for large x, the –2x term dominates so that   1 – 2x ~ –2x. Thus, for large x, we have approximately:   f(x) ~ (3x^(3/2)) / (–2x) = –(3/2) x^(3/2 – 1) = –(3/2) x^(1/2). Since x^(1/2) grows without bound as x → +∞, it follows that   –(3/2) x^(1/2) → –∞. Answer for (b): limₓ→∞ f(x) = –∞. ────────────────────────────── Summary of Answers: (a) The limit as x → –∞ does not exist (within the real numbers) because the function is only defined for x ≥ ∛(–7/9). (b) limₓ→∞ f(x) = –∞.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the limits of the given function \( f(x) = \frac{\sqrt{7 + 9x^3}}{1 - 2x} \), let's analyze each limit separately. (a) For \( \lim_{x \rightarrow -\infty} f(x) \): As \( x \) approaches \(-\infty\), the dominant term in the square root is \( 9x^3 \), so we can approximate the function as: \[ f(x) \approx \frac{\sqrt{9x^3}}{1 - 2x} = \frac{\sqrt{9} \sqrt{x^3}}{1 - 2x} = \frac{3\sqrt{x^3}}{1 - 2x} \] Since \( \sqrt{x^3} = x^{3/2} \sqrt{-1} = i |x|^{3/2} \) for \( x < 0 \), our focus is on the magnitudes: \[ \sqrt{x^3} = i (-x)^{3/2} \] So as \( x \) goes to \(-\infty\), \( \frac{3(-x)^{3/2}}{1 + 2|x|} \) behaves like: \[ f(x) \approx \frac{3(-x)^{3/2}}{2|x|} = \frac{3(-x)^{3/2}}{2(-x)} = \frac{3(-x)^{1/2}}{2} \] As \( x \to -\infty \), \( (-x)^{1/2} \to \infty \). Thus, \[ \lim_{x \rightarrow -\infty} f(x) = -\infty. \] (b) For \( \lim_{x \rightarrow \infty} f(x) \): As \( x \to \infty\), again the dominant term under the square root is \( 9x^3 \): \[ f(x) \approx \frac{\sqrt{9x^3}}{1 - 2x} = \frac{3\sqrt{x^3}}{1 - 2x} \] Here, \[ \sqrt{x^3} = x^{3/2}, \] Thus, we can approximate \( f(x) \) as: \[ f(x) \approx \frac{3x^{3/2}}{1 - 2x}. \] For large \( x \), \( 1 - 2x \) is dominated by \(-2x\): \[ f(x) \approx \frac{3x^{3/2}}{-2x} = \frac{-3}{2} x^{1/2} . \] As \( x \to \infty\), \( x^{1/2} \to \infty \), so: \[ \lim_{x \rightarrow \infty} f(x) = -\infty. \] In summary, the limits are: - (a) \( \lim_{x \rightarrow -\infty} f(x) = -\infty \) - (b) \( \lim_{x \rightarrow \infty} f(x) = -\infty \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad