Pregunta
upstudy study bank question image url

Ryann and Lydia are taking canoe ride across Smithville lake. They can go 14 miles across the lake in the same time it takes them to go 9 miles back against the current. If their speed in still water is 6 mph , What is the rate of the current? Round your answer to the nearest tenth. Type your answer...

Ask by Matthews Lee. in the United States
Nov 14,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The rate of the current is approximately 1.3 mph.

Solución

Let's denote the rate of the current as \( c \) mph. When Ryann and Lydia are going across the lake, their effective speed is \( 6 + c \) mph. When they are going back against the current, their effective speed is \( 6 - c \) mph. Given that they can go 14 miles across the lake in the same time it takes them to go 9 miles back against the current, we can set up the following equation based on the time taken for each trip: \[ \frac{14}{6+c} = \frac{9}{6-c} \] Now, we can solve this equation to find the rate of the current \( c \). Solve the equation by following steps: - step0: Solve for \(c\): \(\frac{14}{6+c}=\frac{9}{6-c}\) - step1: Find the domain: \(\frac{14}{6+c}=\frac{9}{6-c},c \in \left(-\infty,-6\right)\cup \left(-6,6\right)\cup \left(6,+\infty\right)\) - step2: Cross multiply: \(14\left(6-c\right)=\left(6+c\right)\times 9\) - step3: Simplify the equation: \(14\left(6-c\right)=9\left(6+c\right)\) - step4: Calculate: \(84-14c=9\left(6+c\right)\) - step5: Calculate: \(84-14c=54+9c\) - step6: Move the expression to the left side: \(84-14c-\left(54+9c\right)=0\) - step7: Calculate: \(30-23c=0\) - step8: Move the constant to the right side: \(-23c=0-30\) - step9: Remove 0: \(-23c=-30\) - step10: Change the signs: \(23c=30\) - step11: Divide both sides: \(\frac{23c}{23}=\frac{30}{23}\) - step12: Divide the numbers: \(c=\frac{30}{23}\) - step13: Check if the solution is in the defined range: \(c=\frac{30}{23},c \in \left(-\infty,-6\right)\cup \left(-6,6\right)\cup \left(6,+\infty\right)\) - step14: Find the intersection: \(c=\frac{30}{23}\) The rate of the current is \( c = \frac{30}{23} \) mph. Rounded to the nearest tenth, the rate of the current is approximately 1.3 mph.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let the rate of the current be \( c \) mph. When they paddle across the lake, their speed is \( 6 \, \text{mph} + c \, \text{mph} \) and when they paddle back against the current, their speed is \( 6 \, \text{mph} - c \, \text{mph} \). Using the formula \( \text{time} = \frac{\text{distance}}{\text{speed}} \), we can set the times equal since they take the same time for both trips: \[ \frac{14}{6 + c} = \frac{9}{6 - c} \] Cross-multiplying gives us: \[ 14(6 - c) = 9(6 + c) \] Expanding both sides: \[ 84 - 14c = 54 + 9c \] Combining like terms: \[ 84 - 54 = 14c + 9c \] \[ 30 = 23c \] Solving for \( c \): \[ c = \frac{30}{23} \approx 1.304 \] Rounded to the nearest tenth, the rate of the current is approximately \( 1.3 \) mph.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad