Pregunta
Find the reference angle for \( \frac{7 \pi}{9} \). The reference angle is (Simplify your answer. Use integers or fractions for any numbers in the expression. Type your answer in radians.
Ask by Macdonald Owen. in the United States
Dec 03,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The reference angle for \( \frac{7\pi}{9} \) is \( \frac{2\pi}{9} \).
Solución
To find the reference angle for \( \frac{7\pi}{9} \), we first need to determine in which quadrant the angle lies.
The angle \( \frac{7\pi}{9} \) is greater than \( \pi \) (which is \( \frac{9\pi}{9} \)) but less than \( \frac{3\pi}{2} \) (which is \( \frac{13.5\pi}{9} \)). Therefore, \( \frac{7\pi}{9} \) is in the second quadrant.
The reference angle \( \theta' \) for an angle in the second quadrant can be found using the formula:
\[
\theta' = \pi - \theta
\]
Substituting \( \theta = \frac{7\pi}{9} \):
\[
\theta' = \pi - \frac{7\pi}{9}
\]
To perform the subtraction, we first express \( \pi \) with a common denominator:
\[
\pi = \frac{9\pi}{9}
\]
Now we can subtract:
\[
\theta' = \frac{9\pi}{9} - \frac{7\pi}{9} = \frac{2\pi}{9}
\]
Thus, the reference angle for \( \frac{7\pi}{9} \) is
\[
\boxed{\frac{2\pi}{9}}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Extra Insights
To find the reference angle for \( \frac{7 \pi}{9} \), we first determine its position in the unit circle. Since \( \frac{7 \pi}{9} \) is greater than \( \pi \) but less than \( \frac{3 \pi}{2} \), it lies in the second quadrant. The reference angle can be found by subtracting it from \( \pi \): \[ \text{Reference Angle} = \pi - \frac{7 \pi}{9} = \frac{9 \pi}{9} - \frac{7 \pi}{9} = \frac{2 \pi}{9}. \] Thus, the reference angle is \( \frac{2 \pi}{9} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium