Pregunta
upstudy study bank question image url

arah invested \( \$ 2,500 \) in an account aying an interest rate of \( 2.1 \% \) ompounded continuously. Assumin o deposits or withdrawals are nade, how much money, to the earest hundred dollars, would be he account after 14 years?

Ask by Owen Schneider. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 14 years, the account would have approximately \$3,400.

Solución

We use the formula for continuous compounding:   A = P × e^(rt) where   P = $2,500,   r = 0.021 (2.1% expressed as a decimal),   t = 14 years. Substitute in the values:   A = 2500 × e^(0.021×14) = 2500 × e^(0.294). Evaluating e^(0.294) gives approximately 1.3419, so   A ≈ 2500 × 1.3419 ≈ 3354.75. Rounding to the nearest hundred dollars, the balance is approximately $3,400.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the amount in Sarah's account after 14 years, we use the formula for continuous compound interest: \[ A = Pe^{rt} \] where: - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (the initial investment), - \( r \) is the annual interest rate (in decimal), - \( t \) is the time the money is invested for (in years), - \( e \) is the base of the natural logarithm (approximately 2.71828). Plugging in the values: - \( P = 2500 \) - \( r = 0.021 \) (2.1% as a decimal) - \( t = 14 \) \[ A = 2500 \times e^{0.021 \times 14} \] Calculating this: 1. Calculate \( 0.021 \times 14 = 0.294 \). 2. Find \( e^{0.294} \approx 1.3415 \). 3. Now multiply \( 2500 \times 1.3415 \approx 3353.75 \). Rounding to the nearest hundred dollars, the amount after 14 years would be approximately \( \$3,400 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad