Pregunta
upstudy study bank question image url

\begin{tabular}{l|l} The length \( \ell \) of a rectangle is & The rate of change of the \\ decreasing at a rate of \( 3 \mathrm{~cm} / \mathrm{sec} \) & area of the rectangle is \\ while the width \( w \) is increasing at a & \( \mathrm{cm}^{2} / \mathrm{sec} \) \\ rate of \( 3 \mathrm{~cm} / \mathrm{sec} \). When \( \ell=12 \mathrm{~cm} \) & (Simplify your answer.) \\ and \( w=5 \mathrm{~cm} \), find the rates of & \\ change of the area, the perimeter, \\ and the lengths of the diagonals of \\ the rectangle. Determine which of & \\ these quantities are increasing, & \\ decreasing, or constant. \end{tabular}

Ask by Best Ingram. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- The area is increasing at 21 cm²/sec. - The perimeter is not changing. - The length of the diagonal is decreasing at 21/13 cm/sec.

Solución

Let ℓ be the length and w the width of the rectangle with   dℓ/dt = –3 cm/sec  and  dw/dt = 3 cm/sec. At the moment considered, ℓ = 12 cm and w = 5 cm. 1. Area (A = ℓ · w):   Differentiate A with respect to time:    dA/dt = ℓ · (dw/dt) + w · (dℓ/dt)   Substitute the values:    dA/dt = 12(3) + 5(–3) = 36 – 15 = 21 cm²/sec   Since dA/dt > 0, the area is increasing. 2. Perimeter (P = 2(ℓ + w)):   Differentiate P with respect to time:    dP/dt = 2(dℓ/dt + dw/dt)   Substitute the values:    dP/dt = 2(–3 + 3) = 2(0) = 0 cm/sec   Since dP/dt = 0, the perimeter is constant. 3. Diagonal (D = √(ℓ² + w²)):   Differentiate D with respect to time. Using the chain rule:    dD/dt = (ℓ · dℓ/dt + w · dw/dt) / √(ℓ² + w²)   Compute the numerator:    ℓ · dℓ/dt + w · dw/dt = 12(–3) + 5(3) = –36 + 15 = –21   Compute the denominator:    √(ℓ² + w²) = √(12² + 5²) = √(144 + 25) = √169 = 13   Thus,    dD/dt = –21/13 cm/sec   Since dD/dt is negative, the length of the diagonal is decreasing. Summary:  • Area is increasing at 21 cm²/sec.  • Perimeter is constant.  • Diagonal is decreasing at 21/13 cm/sec.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the rates of change of the area, perimeter, and lengths of the diagonals of the rectangle, we can use related rates. **Area \( A \)** of a rectangle is given by \( A = \ell \times w \). The rate of change of area \( \frac{dA}{dt} \) can be found using the product rule: \[ \frac{dA}{dt} = \ell \cdot \frac{dw}{dt} + w \cdot \frac{d\ell}{dt} \] Substituting \(\ell = 12 \, \text{cm}\), \(w = 5 \, \text{cm}\), \(\frac{d\ell}{dt} = -3 \, \text{cm/s}\), and \(\frac{dw}{dt} = 3 \, \text{cm/s}\): \[ \frac{dA}{dt} = 12 \cdot 3 + 5 \cdot (-3) = 36 - 15 = 21 \, \text{cm}^2/\text{s} \] Thus, the area is increasing at a rate of \( 21 \, \text{cm}^2/\text{s} \). **Perimeter \( P \)** of the rectangle is given by \( P = 2(\ell + w) \). The rate of change of perimeter \( \frac{dP}{dt} \): \[ \frac{dP}{dt} = 2\left(\frac{d\ell}{dt} + \frac{dw}{dt}\right) \] Substituting the rates: \[ \frac{dP}{dt} = 2\left(-3 + 3\right) = 2 \cdot 0 = 0 \, \text{cm/s} \] Thus, the perimeter is constant. **Diagonal \( d \)** of the rectangle is given by \( d = \sqrt{\ell^2 + w^2} \). To find \( \frac{dd}{dt} \), we use: \[ \frac{dd}{dt} = \frac{1}{2\sqrt{\ell^2 + w^2}} \cdot (2\ell \cdot \frac{d\ell}{dt} + 2w \cdot \frac{dw}{dt}) \] This simplifies to: \[ \frac{dd}{dt} = \frac{\ell \cdot \frac{d\ell}{dt} + w \cdot \frac{dw}{dt}}{\sqrt{\ell^2 + w^2}} \] Calculating it: \[ \frac{dd}{dt} = \frac{12 \cdot (-3) + 5 \cdot 3}{\sqrt{12^2 + 5^2}} = \frac{-36 + 15}{\sqrt{144 + 25}} = \frac{-21}{\sqrt{169}} = -\frac{21}{13} \approx -1.62 \, \text{cm/s} \] Thus, the diagonal is decreasing at a rate of about \( 1.62 \, \text{cm/s} \). To summarize: - Area is increasing at \( 21 \, \text{cm}^2/\text{s} \) (increasing). - Perimeter is constant (no change). - Diagonal is decreasing at approximately \( 1.62 \, \text{cm/s} \) (decreasing).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad