Pregunta
upstudy study bank question image url

Evaluate the integral. (Remember to use absolute values where appropriate. Use \( C \) for the constant of integration.) \[ \int \frac{5}{(x-1)\left(x^{2}+4\right)} d x \] Need Help? Watch li Master II

Ask by Carlson Moran. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral of \( \frac{5}{(x-1)(x^2+4)} \) with respect to \( x \) is: \[ \ln\left(\frac{|x-1|}{\sqrt{x^2+4}}\right) - \frac{1}{2}\arctan\left(\frac{x}{2}\right) + C \] where \( C \) is the constant of integration.

Solución

Calculate the integral \( \int \frac{5}{(x-1)(x^2+4)} dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{5}{\left(x-1\right)\left(x^{2}+4\right)} dx\) - step1: Multiply the terms: \(\int \frac{5}{x^{3}+4x-x^{2}-4} dx\) - step2: Rewrite the expression: \(\int 5\times \frac{1}{x^{3}+4x-x^{2}-4} dx\) - step3: Use properties of integrals: \(5\times \int \frac{1}{x^{3}+4x-x^{2}-4} dx\) - step4: Rewrite the fraction: \(5\times \int \left(\frac{1}{5x-5}-\frac{1+x}{5x^{2}+20}\right) dx\) - step5: Use properties of integrals: \(5\left(\int \frac{1}{5x-5} dx+\int -\frac{1+x}{5x^{2}+20} dx\right)\) - step6: Calculate: \(5\times \int \frac{1}{5x-5} dx+5\times \int -\frac{1+x}{5x^{2}+20} dx\) - step7: Evaluate the integral: \(\ln{\left(\left|x-1\right|\right)}+5\times \int -\frac{1+x}{5x^{2}+20} dx\) - step8: Evaluate the integral: \(\ln{\left(\left|x-1\right|\right)}-\frac{1}{2}\arctan\left(\frac{x}{2}\right)-\frac{1}{2}\ln{\left(x^{2}+4\right)}\) - step9: Subtract the terms: \(\ln{\left(\frac{\left|x-1\right|}{\left(x^{2}+4\right)^{\frac{1}{2}}}\right)}-\frac{1}{2}\arctan\left(\frac{x}{2}\right)\) - step10: Add the constant of integral C: \(\ln{\left(\frac{\left|x-1\right|}{\left(x^{2}+4\right)^{\frac{1}{2}}}\right)}-\frac{1}{2}\arctan\left(\frac{x}{2}\right) + C, C \in \mathbb{R}\) The integral of \( \frac{5}{(x-1)(x^2+4)} \) with respect to \( x \) is given by: \[ \int \frac{5}{(x-1)(x^2+4)} dx = \ln\left(\frac{|x-1|}{\sqrt{x^2+4}}\right) - \frac{1}{2}\arctan\left(\frac{x}{2}\right) + C \] where \( C \) is the constant of integration.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To evaluate the integral \[ \int \frac{5}{(x-1)(x^{2}+4)} \, dx, \] we start by using partial fraction decomposition: \[ \frac{5}{(x-1)(x^2+4)} = \frac{A}{x-1} + \frac{Bx + C}{x^2 + 4}. \] Multiplying through by the denominator \((x-1)(x^2+4)\) gives: \[ 5 = A(x^2 + 4) + (Bx + C)(x - 1). \] Next, expand the right side and collect like terms, then set up a system of equations by comparing coefficients. After solving for \(A\), \(B\), and \(C\), we can break the integral into simpler parts. This reduces our integral to a sum of simpler integrals, which can be individually evaluated: 1. For \(\frac{A}{x-1}\), the integral is \(A \ln |x - 1|\). 2. For \(\frac{Bx + C}{x^2 + 4}\), we break it into \(\frac{Bx}{x^2 + 4}\) and \(\frac{C}{x^2 + 4}\), which can be solved using a combination of substitutions and arctangent functions. Finally, combining all these results, we get: \[ \int \frac{5}{(x-1)(x^2 + 4)} \, dx = A \ln |x - 1| + \frac{B}{2} \ln(x^2 + 4) + C \arctan\left(\frac{x}{2}\right) + C, \] where the constants can be merged into a single constant of integration \(C\). So the complete integral evaluates to: \[ = \frac{5}{4} \ln |x - 1| + \frac{5}{8} \ln(x^2 + 4) + \frac{5}{8} \arctan\left(\frac{x}{2}\right) + C. \]

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad