Pregunta
upstudy study bank question image url

A golf ball is hit with an initial velocity of 150 feet per second at an inclination of \( 45^{\circ} \) to the horizontal. In physics, it is established that the height h of the golf ball is given by the function \[ \mathrm{h}(\mathrm{x})=\frac{-32 \mathrm{x}^{2}}{150^{2}}+\mathrm{x} \text {, } \] where x is the horizontal distance that the golf ball has traveled. Complete parts (a) through (g). (a) Determine the height of the golf ball after it has traveled 100 feet. \( \mathrm{h}=\square \) feet (Round to two decimal places as needed.)

Ask by Park Alexander. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The height of the golf ball after it has traveled 100 feet is approximately 85.78 feet.

Solución

To find the height of the golf ball after it has traveled 100 feet, we need to substitute the value of \( x = 100 \) into the given function \( h(x) = \frac{-32x^2}{150^2} + x \) and calculate the result. Given function: \( h(x) = \frac{-32x^2}{150^2} + x \) Substitute \( x = 100 \) into the function: \[ h(100) = \frac{-32(100)^2}{150^2} + 100 \] Now, let's calculate the height of the golf ball after it has traveled 100 feet. Calculate the value by following steps: - step0: Calculate: \(\frac{-32\times 100^{2}}{150^{2}}+100\) - step1: Reduce the fraction: \(-\frac{128}{3^{2}}+100\) - step2: Evaluate the power: \(-\frac{128}{9}+100\) - step3: Reduce fractions to a common denominator: \(-\frac{128}{9}+\frac{100\times 9}{9}\) - step4: Transform the expression: \(\frac{-128+100\times 9}{9}\) - step5: Multiply the numbers: \(\frac{-128+900}{9}\) - step6: Add the numbers: \(\frac{772}{9}\) The height of the golf ball after it has traveled 100 feet is approximately 85.78 feet.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine the height of the golf ball after it has traveled 100 feet, we'll use the function provided: \[ \mathrm{h}(\mathrm{x})=\frac{-32 \mathrm{x}^{2}}{150^{2}}+\mathrm{x} \] Substituting \( x = 100 \) into the equation: \[ \mathrm{h}(100) = \frac{-32(100)^2}{150^2} + 100 \] Calculating the \( \frac{-32(100)^2}{150^2} \): \[ = \frac{-32 \times 10000}{22500} = \frac{-320000}{22500} \approx -14.22 \] So we have: \[ \mathrm{h}(100) = -14.22 + 100 = 85.78 \] Thus, the height of the golf ball after it has traveled 100 feet is: \(\mathrm{h} \approx 85.78 \) feet.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad