Pregunta
upstudy study bank question image url

(3) \( m x^{2}+n x x+m=3 \) (c) for which value(s) of \( m \) will be followne (3) \( x^{2}+2 m=2 x+2 x+1=0 \) (2) (1) \( x^{2}+2 m=8 x \) (I) \( x^{2}-6 x=m \) (3) \( \frac{x^{2}-5 x+5}{2 x^{2}-x+1}=\frac{1}{m} \) (c) Show that the equation \( x^{2}+(k-2) x-k=0 \) has ral roots for all real values of \( k \). (f) Given the equation \( x^{2}+(1+3) x+1=-2 \). (1) Show that the equation has real roots for all real values of \( t \). (2) For which value(s) of \( f \) will the equation have equal rools?

Ask by Moreno Ball. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To determine the values of \( m \) for which certain quadratic equations have real roots, we analyze each equation's discriminant. 1. **For \( x^{2} - 4x + (2m - 1) = 0 \)**: - Discriminant \( D = 16 - 8m \geq 0 \) implies \( m \leq 2.5 \). 2. **For \( x^{2} - 8x + 2m = 0 \)**: - Discriminant \( D = 64 - 8m \geq 0 \) implies \( m \leq 8 \). 3. **For \( x^{2} - 6x - m = 0 \)**: - Discriminant \( D = 36 + 4m \geq 0 \) implies \( m \geq -9 \). 4. **For \( \frac{x^{2} - 5x + 5}{2x^{2} - x + 1} = \frac{1}{m} \)**: - Cross-multiplying leads to a quadratic in \( x \) with a discriminant that must be non-negative for real roots. 5. **For \( x^{2} + (k - 2)x - k = 0 \)**: - The discriminant \( D = (k - 2)^2 + 4k \) is always non-negative, ensuring real roots for all real \( k \). 6. **For \( x^{2} + 4t + 3 = 0 \)**: - The discriminant \( D = 16 - 12 = 4 \geq 0 \) confirms real roots for all \( t \). 7. **For equal roots in \( x^{2} + 4t + 3 = 0 \)**: - Set the discriminant to zero: \( 16 - 12 = 0 \), which is always true, meaning equal roots exist for all \( t \). **Summary**: - The value of \( m \) must satisfy \( -9 \leq m \leq 2.5 \) for the first two equations to have real roots. - The equation \( x^{2} + (k - 2)x - k = 0 \) has real roots for all real values of \( k \). - The equation \( x^{2} + 4t + 3 = 0 \) has real roots for all real values of \( t \). - The condition for equal roots in the last equation is always satisfied for any real \( t \).

Solución

Let's break down the problem step by step, extracting the known conditions and solving each part systematically. ### Part 1: Analyzing the equations 1. **Equation (3)**: \( m x^{2} + n x + m = 3 \) 2. **Equation (3)**: \( x^{2} + 2m = 2x + 2x + 1 = 0 \) simplifies to \( x^{2} - 4x + (2m - 1) = 0 \) 3. **Equation (1)**: \( x^{2} + 2m = 8x \) simplifies to \( x^{2} - 8x + 2m = 0 \) 4. **Equation (I)**: \( x^{2} - 6x = m \) simplifies to \( x^{2} - 6x - m = 0 \) 5. **Equation (3)**: \( \frac{x^{2} - 5x + 5}{2x^{2} - x + 1} = \frac{1}{m} \) 6. **Equation**: \( x^{2} + (k - 2)x - k = 0 \) 7. **Equation**: \( x^{2} + (1 + 3)t + 1 = -2 \) ### Part 2: Solving for \( m \) #### For the equation \( x^{2} - 4x + (2m - 1) = 0 \) to have real roots: The discriminant must be non-negative: \[ D = b^2 - 4ac = (-4)^2 - 4(1)(2m - 1) \geq 0 \] Calculating the discriminant: \[ 16 - 8m + 4 \geq 0 \implies 20 - 8m \geq 0 \implies m \leq \frac{20}{8} = 2.5 \] #### For the equation \( x^{2} - 8x + 2m = 0 \) to have real roots: The discriminant must also be non-negative: \[ D = (-8)^2 - 4(1)(2m) \geq 0 \] Calculating the discriminant: \[ 64 - 8m \geq 0 \implies 8m \leq 64 \implies m \leq 8 \] #### For the equation \( x^{2} - 6x - m = 0 \) to have real roots: The discriminant must be non-negative: \[ D = (-6)^2 - 4(1)(-m) \geq 0 \] Calculating the discriminant: \[ 36 + 4m \geq 0 \implies 4m \geq -36 \implies m \geq -9 \] ### Part 3: Solving the equation \( \frac{x^{2} - 5x + 5}{2x^{2} - x + 1} = \frac{1}{m} \) Cross-multiplying gives: \[ m(x^{2} - 5x + 5) = 2x^{2} - x + 1 \] Rearranging: \[ mx^{2} - 5mx + 5m - 2x^{2} + x - 1 = 0 \] This is a quadratic in \( x \). The discriminant must be non-negative for real roots. ### Part 4: Showing that \( x^{2} + (k - 2)x - k = 0 \) has real roots for all \( k \) The discriminant is: \[ D = (k - 2)^2 - 4(-k) = (k - 2)^2 + 4k \] This is always non-negative since both terms are squares or positive. ### Part 5: Given the equation \( x^{2} + (1 + 3)t + 1 = -2 \) This simplifies to: \[ x^{2} + 4t + 3 = 0 \] The discriminant must be non-negative: \[ D = 4^2 - 4(1)(3) = 16 - 12 = 4 \geq 0 \] This shows that the equation has real roots for all \( t \). ### Part 6: For which value(s) of \( f \) will the equation have equal roots? The condition for equal roots is that the discriminant is zero: \[ D = 0 \implies 4^2 - 4(1)(3) = 0 \] This gives us the condition for \( f \). ### Summary of Results - For \( m \): \( -9 \leq m \leq 2.5 \) - The equation \( x^{2} + (k - 2)x - k = 0 \) has real roots for all \( k \). - The equation \( x^{2} + 4t + 3 = 0 \) has real roots for all \( t \). - The condition for equal roots can be derived from the discriminant being zero. If you need further calculations or clarifications on any specific part, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's dive into some fun math exploration! For the equation \( x^{2}+(k-2) x-k=0 \) to have real roots, the discriminant must be non-negative. The discriminant \(\Delta\) is given by \( (k-2)^2 - 4(-k) \). Simplifying this leads to \( (k-2)^2 + 4k \). This expression will always be greater than or equal to 0 for all real \( k \), indicating that real roots exist for every \( k \) — a small but mighty math victory! Now let's tackle the second part! The equation \( x^{2}+(t+3)x+1=-2 \) simplifies to \( x^{2}+(t+3)x+3=0 \). For this quadratic to have equal roots, the discriminant must be zero. Thus, \( (t+3)^2 - 4(3) = 0 \). Solving for \( t \) gives us \( t = -3 \pm 2 \sqrt{3} \). These values ensure that the roots won't just exist; they'll be perfectly equal — a thrilling twist in the quadratic world!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad