Pregunta
upstudy study bank question image url

Solve the following equation for values of \( \theta \) between \( 0^{\circ} \) and \( 360^{\circ} \) \[ 2-3 \cos ^{2} \theta=2 \sin \theta \]

Ask by Craig Cox. in Isle of Man
Nov 11,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \theta = -\arcsin\left(\frac{1}{3}\right) + 2k\pi, \frac{\pi}{2} + 2k\pi, \arcsin\left(\frac{1}{3}\right) + \pi + 2k\pi \]

Solución

Solve the equation \( 2-3 \cos ^{2} \theta=2 \sin \theta \). Solve the equation by following steps: - step0: Solve for \(\theta\): \(2-3\cos^{2}\left(\theta \right)=2\sin\left(\theta \right)\) - step1: Rewrite the expression: \(-1+3\sin^{2}\left(\theta \right)=2\sin\left(\theta \right)\) - step2: Move the expression to the left side: \(-1+3\sin^{2}\left(\theta \right)-2\sin\left(\theta \right)=0\) - step3: Factor the expression: \(\left(-1+\sin\left(\theta \right)\right)\left(1+3\sin\left(\theta \right)\right)=0\) - step4: Separate into possible cases: \(\begin{align}&-1+\sin\left(\theta \right)=0\\&1+3\sin\left(\theta \right)=0\end{align}\) - step5: Solve the equation: \(\begin{align}&\theta =\frac{\pi }{2}+2k\pi ,k \in \mathbb{Z}\\&\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1}{3}\right)+2k\pi \\\arcsin\left(\frac{1}{3}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(\theta =\left\{ \begin{array}{l}-\arcsin\left(\frac{1}{3}\right)+2k\pi \\\frac{\pi }{2}+2k\pi \\\arcsin\left(\frac{1}{3}\right)+\pi +2k\pi \end{array}\right.,k \in \mathbb{Z}\) The solutions for the equation \(2-3 \cos ^{2} \theta=2 \sin \theta\) for values of \( \theta \) between \(0^{\circ}\) and \(360^{\circ}\) are: \[ \theta = -\arcsin\left(\frac{1}{3}\right) + 2k\pi, \frac{\pi}{2} + 2k\pi, \arcsin\left(\frac{1}{3}\right) + \pi + 2k\pi \] where \( k \) is an integer.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

First, let's rewrite the equation: \[ 2 - 3 \cos^2 \theta = 2 \sin \theta. \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can express \( \cos^2 \theta \) as \( 1 - \sin^2 \theta \). Substituting this into the equation gives: \[ 2 - 3(1 - \sin^2 \theta) = 2 \sin \theta. \] Now, simplify the equation: \[ 2 - 3 + 3 \sin^2 \theta = 2 \sin \theta, \] which simplifies to \[ 3 \sin^2 \theta - 2 \sin \theta - 1 = 0. \] Next, we'll let \( x = \sin \theta \), turning the quadratic into: \[ 3x^2 - 2x - 1 = 0. \] Using the quadratic formula, \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here \( a = 3, b = -2, c = -1 \): \[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 3 \cdot (-1)}}{2 \cdot 3}, \] \[ x = \frac{2 \pm \sqrt{4 + 12}}{6}, \] \[ x = \frac{2 \pm \sqrt{16}}{6}, \] \[ x = \frac{2 \pm 4}{6}. \] This gives: 1. \( x = \frac{6}{6} = 1 \) 2. \( x = \frac{-2}{6} = -\frac{1}{3} \) Now we can find \( \theta \): 1. For \( x = \sin \theta = 1 \): \[ \theta = 90^\circ. \] 2. For \( x = \sin \theta = -\frac{1}{3} \): To find \( \theta \), we use the arcsine function: \[ \theta = \arcsin\left(-\frac{1}{3}\right). \] This will give us an angle in the fourth quadrant: \[ \theta \approx -19.1^\circ, \] but since we want angles between \( 0^\circ \) and \( 360^\circ \), we add \( 360^\circ \) to get: \[ \theta \approx 360^\circ - 19.1^\circ \approx 340.9^\circ. \] Additionally, there is another solution for sine in the third quadrant: \[ \theta = 180^\circ + 19.1^\circ \approx 199.1^\circ. \] In conclusion, the values of \( \theta \) between \( 0^\circ \) and \( 360^\circ \) that satisfy the equation are: \[ \theta \approx 90^\circ, 199.1^\circ, 340.9^\circ. \]

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad