Pregunta
upstudy study bank question image url

18. A has coordinates \( (-3,0) \) \( B \) has coordinates \( (1,6) \) \( C \) has coordinates \( (5,2) \) Find an equation of the line that passes through \( C \) and is perpendicular to \( A B \). Give your equation in the form \( a x+b y=c \) where \( a, b \) and \( c \) are integers.

Ask by Simpson Hill. in the United Arab Emirates
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the line is \( 2x + 3y = 16 \).

Solución

Step 1. Find the slope of line AB. The slope between A(–3, 0) and B(1, 6) is calculated by:   m₍AB₎ = (6 – 0) / (1 – (–3)) = 6 / 4 = 3/2. Step 2. Determine the slope of the line perpendicular to AB. For perpendicular lines, the slope is the negative reciprocal. Therefore, the slope for our line (m) is:   m = –2/3. Step 3. Write the equation of the line through point C(5, 2) with slope –2/3. Using the point-slope form:   y – y₁ = m (x – x₁), we substitute:   y – 2 = (–2/3)(x – 5). Step 4. Clear the fraction and rearrange into the form ax + by = c. Multiply both sides by 3 to eliminate the fraction:   3(y – 2) = –2(x – 5), which gives:   3y – 6 = –2x + 10. Add 2x to both sides and add 6 to both sides:   2x + 3y = 16. The equation of the line in the required form is:   2x + 3y = 16.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation of the line that passes through point \( C(5,2) \) and is perpendicular to line \( AB \), we first need to determine the slope of \( AB \). The slope \( m_{AB} \) between points \( A(-3,0) \) and \( B(1,6) \) is calculated as follows: \[ m_{AB} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{6 - 0}{1 - (-3)} = \frac{6}{4} = \frac{3}{2}. \] The slope of the line perpendicular to \( AB \) is the negative reciprocal of \( m_{AB} \): \[ m_{\text{perpendicular}} = -\frac{1}{m_{AB}} = -\frac{2}{3}. \] Now we use the point-slope form of the equation of a line to find the equation of the line through point \( C(5,2) \): \[ y - y_1 = m(x - x_1). \] Substituting in \( C(5,2) \) and the slope \( -\frac{2}{3} \): \[ y - 2 = -\frac{2}{3}(x - 5). \] Now, simplify this equation: \[ y - 2 = -\frac{2}{3}x + \frac{10}{3}. \] Adding 2 (which is \( \frac{6}{3} \)) to both sides gives us: \[ y = -\frac{2}{3}x + \frac{10}{3} + \frac{6}{3} = -\frac{2}{3}x + \frac{16}{3}. \] To convert this to the form \( ax + by = c \), we can multiply through by 3 to eliminate the fractions: \[ 3y = -2x + 16. \] Rearranging gives: \[ 2x + 3y = 16. \] Thus, the equation of the line in the form \( ax + by = c \) is: \[ \boxed{2x + 3y = 16}. \]

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad