Pregunta
upstudy study bank question image url

Factor. \[ -20 r^{2}+60 r-45 \] \( -20 r^{2}+60 r-45=\square( \) Factor completely.)

Ask by Ortega Ball. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ -20r^{2} + 60r - 45 = -5(2r - 3)^2 \]

Solución

To factor the expression -20r² + 60r - 45, follow these steps: 1. Factor out the greatest common factor (GCF) from all the terms. The GCF of -20, 60, and -45 is -5:   -20r² + 60r - 45 = -5(4r² - 12r + 9). 2. Now, factor the quadratic inside the parentheses. We have:   4r² - 12r + 9. Notice that 4r² is (2r)² and 9 is 3². Also, twice the product of 2r and 3 is 12r, which matches the middle term (with the correct sign). This confirms that the quadratic is a perfect square:   4r² - 12r + 9 = (2r - 3)². 3. Write the fully factored form:   -20r² + 60r - 45 = -5(2r - 3)². Thus, the factored form is -5(2r - 3)².

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To factor the expression \(-20 r^{2} + 60 r - 45\), we can first factor out the greatest common factor (GCF), which is \(-5\): \[ -5(4r^2 - 12r + 9) \] Next, we can factor the quadratic \(4r^2 - 12r + 9\). This can be factored using the method of finding two numbers that multiply to \(4 \times 9 = 36\) and add to \(-12\). Those numbers are \(-6\) and \(-6\), leading to: \[ 4r^2 - 12r + 9 = (2r - 3)(2r - 3) = (2r - 3)^2 \] So we rewrite the expression: \[ -20 r^{2}+60 r-45 = -5(2r - 3)^2 \] Now we have the complete factorization: \[ -5(2r - 3)^2 \] Feeling like a math detective? It's actually quite fascinating how factoring can sometimes feel like uncovering hidden treasures in equations! It's almost like a magic trick where numbers reappear in a different form, revealing deeper connections between them. For those looking to sharpen their factoring skills, practicing with different types of polynomials can really enhance your abilities. You could start with simple quadratics and soon progress to more complex expressions. There are tons of resources available, including online tutorials and math games that will make the process engaging and rewarding!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad