Find \( f(g(x)) \) and \( g(f(x)) \) and determine whether the pair of functions \( f \) and \( g \) are inverses of each other. \( f(x)=9 x-8 \) and \( g(x)=\frac{x+9}{8} \) a. \( f(g(x))=\frac{9 x+17}{8} \) (Simplify your answer. Use integers or fractions for any numbers in the expression.) b. \( g(f(x))=\frac{9 x+1}{8} \) (Simplify your answer. Use integers or fractions for any numbersin the expression.) c. \( f \) and \( g \) are inverses of each other. cand \( g \) are not inverses of each other.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the compositions \( f(g(x)) \) and \( g(f(x)) \), we will substitute one function into the other. 1. For \( f(g(x)) \): \[ g(x) = \frac{x + 9}{8} \] Now, substitute \( g(x) \) into \( f \): \[ f(g(x)) = f\left(\frac{x+9}{8}\right) = 9\left(\frac{x+9}{8}\right) - 8 \] Simplifying gives: \[ f(g(x)) = \frac{9(x+9)}{8} - 8 = \frac{9x + 81}{8} - \frac{64}{8} = \frac{9x + 17}{8} \] 2. For \( g(f(x)) \): \[ f(x) = 9x - 8 \] Now, substitute \( f(x) \) into \( g \): \[ g(f(x)) = g(9x - 8) = \frac{(9x-8) + 9}{8} \] Simplifying gives: \[ g(f(x)) = \frac{9x + 1}{8} \] Now, let's analyze whether \( f \) and \( g \) are inverses. For two functions to be inverses, the compositions \( f(g(x)) \) and \( g(f(x)) \) must equal \( x \). From our results: - \( f(g(x)) = \frac{9x + 17}{8} \) (not equal to \( x \)) - \( g(f(x)) = \frac{9x + 1}{8} \) (not equal to \( x \)) Thus, \( f \) and \( g \) are **not** inverses of each other.
