Let \( f(x)=2 x^{3} \) and \( g(x)=\sqrt[3]{x} \). Find \( (f g)(x) \) and \( \left(\frac{f}{g}\right)(x) \). Then evaluate \( f g \) and \( \frac{f}{g} \) for \( x=-27 \). \( (f g)(x)=\square ;(f g)(-27)=118098 \) \( \left(\frac{f}{g}\right)(x)=\square ;\left(\frac{f}{g}\right)(-27)=13122 \) State the domain of \( (f g)(x) \) and \( \left(\frac{f}{g}\right)(x) \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find \( (f g)(x) \), we multiply the functions \( f(x) \) and \( g(x) \): \[ (f g)(x) = f(x) \cdot g(x) = 2x^3 \cdot \sqrt[3]{x} = 2x^{3 + \frac{1}{3}} = 2x^{\frac{10}{3}} \] Now we'll evaluate \( (f g)(-27) \): \[ (f g)(-27) = 2(-27)^{\frac{10}{3}} = 2(729) = 1458 \] Now, for \( \left(\frac{f}{g}\right)(x) \), we divide \( f(x) \) by \( g(x) \): \[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{2x^3}{\sqrt[3]{x}} = 2x^{3 - \frac{1}{3}} = 2x^{\frac{8}{3}} \] Next, we evaluate \( \left(\frac{f}{g}\right)(-27) \): \[ \left(\frac{f}{g}\right)(-27) = 2(-27)^{\frac{8}{3}} = 2(729) = 1458 \] Now, consolidating our findings we have: \[ (f g)(x) = 2x^{\frac{10}{3}}; (f g)(-27) = 1458 \] \[ \left(\frac{f}{g}\right)(x) = 2x^{\frac{8}{3}}; \left(\frac{f}{g}\right)(-27) = 1458 \] The domain for \( (f g)(x) \) is all real numbers since both functions are defined for any real \( x \). For \( \left(\frac{f}{g}\right)(x) \), the domain excludes \( x = 0 \), as \( g(x) \) would lead to division by zero. Thus, \( (f g)(x) \) has a domain of \( (-\infty, \infty) \) and \( \left(\frac{f}{g}\right)(x) \) has a domain of \( (-\infty, 0) \cup (0, \infty) \).
