Pregunta
upstudy study bank question image url

Consider the geometric sequence \( \frac{3}{4} ; \frac{3}{2} ; 3 ; \ldots \) (1) Calculate the sum of the first 10 terms of the sequence. (2) How many terms in this sequence will add up to \( \frac{12285}{4} \) ?

Ask by Carrillo Hardy. in South Africa
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The sum of the first 10 terms is 767 1⁄4. To reach a sum of 12285⁄4, 12 terms are needed.

Solución

Let's analyze the given geometric sequence and solve both parts step by step. ### Given Sequence: \[ \frac{3}{4}, \frac{3}{2}, 3, 6, 12, \ldots \] **First Term (\(a\))**: \(\frac{3}{4}\) **Common Ratio (\(r\))**: \[ r = \frac{\text{Second term}}{\text{First term}} = \frac{\frac{3}{2}}{\frac{3}{4}} = 2 \] ### Part (1): Sum of the First 10 Terms The sum of the first \(n\) terms of a geometric sequence is given by: \[ S_n = a \frac{r^n - 1}{r - 1} \] For \(n = 10\): \[ S_{10} = \frac{3}{4} \cdot \frac{2^{10} - 1}{2 - 1} = \frac{3}{4} \cdot (1024 - 1) = \frac{3}{4} \cdot 1023 = \frac{3069}{4} \] So, the sum of the first 10 terms is: \[ S_{10} = \frac{3069}{4} \quad \text{or} \quad 767\frac{1}{4} \] ### Part (2): Number of Terms Summing to \(\frac{12285}{4}\) Set the sum equal to \(\frac{12285}{4}\) and solve for \(n\): \[ \frac{3}{4} \cdot \frac{2^n - 1}{2 - 1} = \frac{12285}{4} \] \[ 3(2^n - 1) = 12285 \] \[ 2^n - 1 = 4095 \] \[ 2^n = 4096 \] Since \(4096 = 2^{12}\): \[ n = 12 \] ### Final Answers: 1. The sum of the first 10 terms is \(\frac{3069}{4}\). 2. 12 terms are needed to reach a sum of \(\frac{12285}{4}\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To work with the geometric sequence \( \frac{3}{4} ; \frac{3}{2} ; 3 ; \ldots \), we first identify the first term and the common ratio. 1. The first term \( a = \frac{3}{4} \). To find the common ratio \( r \): \[ r = \frac{\text{second term}}{\text{first term}} = \frac{3/2}{3/4} = \frac{3}{2} \cdot \frac{4}{3} = 2. \] Thus, \( r = 2 \). The formula for the sum of the first \( n \) terms of a geometric sequence is given by: \[ S_n = a \frac{1 - r^n}{1 - r} \text{ for } r \neq 1. \] For the first 10 terms: \[ S_{10} = \frac{3}{4} \frac{1 - 2^{10}}{1 - 2} = \frac{3}{4} \frac{1 - 1024}{-1} = \frac{3}{4} \cdot 1023 = \frac{3069}{4}. \] 2. To find out how many terms will add up to \( \frac{12285}{4} \), we set: \[ S_n = a \frac{1 - r^n}{1 - r}. \] Substituting the values: \[ \frac{12285}{4} = \frac{3}{4} \frac{1 - 2^n}{1 - 2}. \] This simplifies to: \[ \frac{12285}{4} = \frac{3}{4} \cdot (1 - 2^n) \cdot (-1). \] So we get: \[ 12285 = 3(1 - 2^n) \] \[ \Rightarrow \frac{12285}{3} = 1 - 2^n \] \[ \Rightarrow 4095 = 1 - 2^n \] \[ \Rightarrow 2^n = 1 - 4095 = -4094 \] This equation leads to a logical inconsistency since \( 2^n \) can never be negative. This implies there are no terms in the sequence that can add up to \( \frac{12285}{4} \). Thus: (1) The sum of the first 10 terms is \( \frac{3069}{4} \). (2) There are no terms in this sequence that sum to \( \frac{12285}{4} \).

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad